Agarwal, GS, Pathak PK (2005) Quantum random walk of the field in an externally driven cavity. Phys Rev A 72(3):033815.
Article
Google Scholar
Aharonov, Y, Davidovich L, Zagury N (1993) Quantum random walks. Phys Rev A 48(2):1687.
Article
Google Scholar
Aharonov, D, Ambainis A, Kempe J, Vazirani U (2001) Quantum Walks on Graphs In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, 50–59.. ACM, New York.
MATH
Google Scholar
Ahmad, R, Sajjad U, Sajid M (2019) One-dimensional quantum walks with a position-dependent coin. arXiv preprint arXiv:1902.10988.
Altaisky, M (2001) Quantum neural network. arXiv preprint quant-ph/0107012.
Ambainis, A (2003) Quantum walks and their algorithmic applications. Int J Quantum Inf 1(04):507–518.
MATH
Article
Google Scholar
Ambainis, A, Bach E, Nayak A, Vishwanath A, Watrous J (2001) One-dimensional Quantum Walks In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, 37–49.. ACM, New York.
Google Scholar
Arjovsky, M, Shah A, Bengio Y (2016) Unitary evolution recurrent neural networks In: International Conference on Machine Learning, 1120–1128.
Atwood, J, Towsley D (2016) Diffusion-Convolutional Neural Networks In: Advances in Neural Information Processing Systems 29, 1993–2001.. Curran Associates, Inc., Red Hook.
Google Scholar
Bai, L, Hancock ER, Torsello A, Rossi L (2013) A quantum jensen-shannon graph kernel using the continuous-time quantum walk In: International Workshop on Graph-Based Representations in Pattern Recognition, 121–131.. Springer, Berlin.
MATH
Chapter
Google Scholar
Bai, L, Rossi L, Cui L, Zhang Z, Ren P, Bai X, Hancock E (2017) Quantum kernels for unattributed graphs using discrete-time quantum walks. Pattern Recogn Lett 87:96–103.
Article
Google Scholar
Bai, L, Rossi L, Torsello A, Hancock ER (2015) A quantum jensen–shannon graph kernel for unattributed graphs. Pattern Recogn 48(2):344–355.
MATH
Article
Google Scholar
Biamonte, J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195.
Article
Google Scholar
Blum, LC, Reymond J-L (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131:8732.
Article
Google Scholar
Borgwardt, KM, Kriegel H-P (2005) Shortest-path kernels on graphs In: Fifth IEEE International Conference on Data Mining (ICDM’05), 8.. IEEE, Houston.
Google Scholar
Borgwardt, KM, Ong CS, Schönauer S, Vishwanathan S, Smola AJ, Kriegel H-P (2005) Protein function prediction via graph kernels. Bioinformatics 21(suppl_1):47–56.
Article
Google Scholar
Brandes, U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177.
MATH
Article
Google Scholar
Bruna, J, Zaremba W, Szlam A, LeCun Y (2014) Spectral networks and locally connected networks on graphs In: International conference on learning representations (ICLR).. OpenReview.net, Amherst.
Google Scholar
Chiang, C-F, Nagaj D, Wocjan P (2010) Efficient Circuits for Quantum Walks. Quantum Info. Comput. 10(5):420–434.
MathSciNet
MATH
Google Scholar
Childs, AM (2009) Universal computation by quantum walk. Phys Rev Lett 102(18):180501.
MathSciNet
Article
Google Scholar
Debnath, AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C (1991) Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. J Med Chem 34(2):786–797.
Article
Google Scholar
Defferrard, M, Bresson X, Vandergheynst P (2016) Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In: Lee D. D., Sugiyama M., Luxburg U. V., Guyon I., Garnett R. (eds)Advances in Neural Information Processing Systems 29, 3844–3852.. Curran Associates, Inc., Red Hook.
Dernbach, S, Mohseni-Kabir A, Pal S, Towsley D (2018) Quantum Walk Neural Networks for Graph-Structured Data. In: Aiello L. M, Cherifi C., Cherifi H., Lambiotte R., Lió P., Rocha L. M. (eds)Complex Networks and Their Applications VII, 182–193.. Springer, Cham.
Google Scholar
Dunjko, V, Briegel HJ (2018) Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics 81(7):074001.
MathSciNet
Article
Google Scholar
Farhi, E, Gutmann S (1998) Quantum computation and decision trees. Phys Rev A 58(2):915.
MathSciNet
Article
Google Scholar
Gilmer, J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural Message Passing for Quantum Chemistry. In: Doina P Yee W. T (eds)Proceedings of the 34th International Conference on Machine Learning, 1263–1272.. PMLR, Sydney.
Gori, M, Monfardini G, Scarselli F (2005) A new model for learning in graph domains In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 729–734.. IEEE, Montreal.
Chapter
Google Scholar
Gupta, S, Zia R (2001) Quantum neural networks. J Comput Syst Sci 63(3):355–383.
MathSciNet
MATH
Article
Google Scholar
Jing, L, Shen Y, Dubček T, Peurifoy J, Skirlo S, LeCun Y, Tegmark M, Soljačić M (2017) Tunable Efficient Unitary Neural Networks (EUNN) and Their Application to RNNs In: Proceedings of the 34th International Conference on Machine Learning - Volume 70, 1733–1741.. JMLR.org, Sydney.
Google Scholar
Joo, J, Knight PL, Pachos JK (2007) Single atom quantum walk with 1d optical superlattices. J Modern Opt 54(11):1627–1638.
MATH
Article
Google Scholar
Jordan, SP, Wocjan P (2009) Efficient quantum circuits for arbitrary sparse unitaries. Phys Rev A 80(6):062301.
MathSciNet
Article
Google Scholar
Kendon, V (2006) Quantum walks on general graphs. Int J Quantum Inf 4(05):791–805.
MATH
Article
Google Scholar
Kipf, TN, Welling M (2016) Semi-Supervised Classification with Graph Convolutional Networks In: 5th International Conference on Learning Representations, ICLR 2017.. OpenReview.net, Amherst.
Google Scholar
Krizhevsky, A, Sutskever I, Hinton GE (2012) ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira F, Burges C. J. C., Bottou L, Weinberger K. Q. (eds)Advances in Neural Information Processing Systems 25, 1097–1105.. Curran Associates, Inc., Red Hook.
Loke, T, Wang J (2011) An efficient quantum circuit analyser on qubits and qudits. Comput Phys Commun 182(10):2285–2294.
MATH
Article
Google Scholar
Loke, T, Wang J (2012) Efficient circuit implementation of quantum walks on non-degree-regular graphs. Phys Rev A 86(4):042338.
Article
Google Scholar
Lovett, NB, Cooper S, Everitt M, Trevers M, Kendon V (2010) Universal quantum computation using the discrete-time quantum walk. Phys Rev A 81(4):042330.
MathSciNet
Article
Google Scholar
Manouchehri, K, Wang J (2008) Quantum walks in an array of quantum dots. J Phys A Math Theor 41(6):065304.
MathSciNet
MATH
Article
Google Scholar
Manouchehri, K, Wang J (2009) Quantum random walks without walking. Phys Rev A 80(6):060304.
MathSciNet
Article
Google Scholar
Nayak, A, Vishwanath A (2000) Quantum walk on the line. arXiv preprint quant-ph/0010117.
Qiang, X, Yang X, Wu J, Zhu X (2012) An enhanced classical approach to graph isomorphism using continuous-time quantum walk. J Phys A Math Theor 45(4):045305.
MathSciNet
MATH
Article
Google Scholar
Rohde, PP, Schreiber A, Štefaňák M, Jex I, Silberhorn C (2011) Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation. New J Phys 13(1):013001.
Article
Google Scholar
Rohde, PP, Schreiber A, Štefaňák M, Jex I, Gilchrist A, Silberhorn C (2013) Increasing the dimensionality of quantum walks using multiple walkers. J Comput Syst Sci Nanosci 10(7):1644–1652.
Google Scholar
Rossi, MA, Benedetti C, Borrelli M, Maniscalco S, Paris MG (2017) Continuous-time quantum walks on spatially correlated noisy lattices. Phys Rev A 96(4):040301.
MathSciNet
Article
Google Scholar
Rossi, L, Torsello A, Hancock ER (2013) A Continuous-Time Quantum Walk Kernel for Unattributed Graphs. In: Kropatsch W. G., Artner N. M., Haxhimusa Y., Jiang X. (eds)Graph-Based Representations in Pattern Recognition, 101–110.. Springer, Berlin.
Chapter
Google Scholar
Rossi, L, Torsello A, Hancock ER (2015) Measuring graph similarity through continuous-time quantum walks and the quantum jensen-shannon divergence. Phys Rev E 91(2):022815.
MathSciNet
Article
Google Scholar
Rupp, M, Tkatchenko A, Müller K-R, von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108:058301.
Article
Google Scholar
Ryan, CA, Laforest M, Boileau J-C, Laflamme R (2005) Experimental implementation of a discrete-time quantum random walk on an nmr quantum-information processor. Phys Rev A 72(6):062317.
Article
Google Scholar
Scarselli, F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80.
Article
Google Scholar
Schomburg, I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res 32(suppl_1):431–433.
Article
Google Scholar
Shenvi, N, Kempe J, Whaley KB (2003) Quantum random-walk search algorithm. Phys Rev A 67(5):052307.
Article
Google Scholar
Shervashidze, N, Schweitzer P, Leeuwen EJv, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-lehman graph kernels. J Mach Learn Res 12(Sep):2539–2561.
MathSciNet
MATH
Google Scholar
Travaglione, BC, Milburn GJ (2002) Implementing the quantum random walk. Phys Rev A 65(3):032310.
Article
Google Scholar
Velickovic, P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks In: Proceedings of the International Conference on Learning Representations (ICLR).. ICLR, Amherst.
Google Scholar
Vinyals, O, Bengio S, Kudlur M (2016) Order Matters: Sequence to sequence for sets In: 4th International Conference on Learning Representations, ICLR 2016.. OpenReview.net, Amherst.
Google Scholar
Wale, N, Watson IA, Karypis G (2008) Comparison of descriptor spaces for chemical compound retrieval and classification. Knowl Inf Syst 14(3):347–375.
Article
Google Scholar
Williams, C, Vose R, Easterling D, Menne M (2006) United states historical climatology network daily temperature, precipitation, and snow data ORNL/CDIAC-118, NDP-070. Available on-line http://cdiac.ornl.gov/epubs/ndp/ushcn/usa. from the Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, USA.
Zhang, P, Ren X-F, Zou X-B, Liu B-H, Huang Y-F, Guo G-C (2007) Demonstration of one-dimensional quantum random walks using orbital angular momentum of photons. Phys Rev A 75(5):052310.
Article
Google Scholar