Skip to main content
Log in

Impact of ovariectomy on neurotransmitter receptors BDNF/TrkB and endoplasmic reticulum molecular chaperones in rat hypoglossal nucleus

  • Original Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

Currently hypoglossal nerve–genioglossus axis is the major research core of OSA pathogenesis. The pathogenesis of OSA incidence changes before and after menopause needs to be clarified further. Little is known about the influences of ovariectomy on hypoglossal motoneurons. In the research, we utilized a rat ovariectomy model to evaluate the expression changes of 5-HT2A and α1-Adrenergic receptors in the hypoglossal nucleus and to explore the involvement of BDNF/TrkB signaling and endoplasmic reticulum molecular chaperones in the hypoglossal nucleus. Results indicated that the expression of 5-HT2A and α1-Adrenergic receptors reduced dramatically in the hypoglossal nucleus of ovariectomized rats. The apoptosis level of hypoglossal motor neurons increased markedly in the OVX groups. The up-regulated expression of BDNF and down-regulated expression of TrkB were found in the OVX groups. Ovarian insufficiency resulted in the activation of UPR and the loss of CANX-CALR cycle. Estrogen replacement could restore these changes partially. Estrogen level influences the expression of neurotransmitter receptors, and regulates BDNF/TrkB signaling compensation and endoplasmic reticulum homeostasis, which might be one of the pathogenesis of menopausal female OSA. The results reveal a new perspective for studying female OSA from the view of hypoglossal nerve and hormonal changes and attempt to propel 17β-estradiol toward a feasible therapy for female OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dursunoglu N, Dursunoglu D. Do we neglect women with sleep apnea? Maturitas. 2007;56(3):332–4.

    Article  PubMed  Google Scholar 

  2. Peppard PE, Young T, Barnet JH, et al. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Franklin KA, Sahlin C, Stenlund H, et al. Sleep apnoea is a common occurrence in females. Eur Respir J. 2013;41(3):610–5.

    Article  PubMed  Google Scholar 

  4. Heinzer R, Vat S, Marques-Vidal P, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3(4):310–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Won C, Guilleminault C. Gender differences in sleep disordered breathing: implications for therapy. Expert Rev Respir Med. 2015;9(2):221–31.

    Article  CAS  PubMed  Google Scholar 

  6. Fabbrini M, AricA I, Tramonti F, et al. Sleep disorders in menopause: results from an Italian multicentric study. Arch Ital Biol. 2015;153(2–3):204–13.

    PubMed  Google Scholar 

  7. Netzer NC, Eliasson AH, Strohl KP. Women with sleep apnea have lower levels of sex hormones. Sleep Breath. 2003;7(1):25–9.

    Article  PubMed  Google Scholar 

  8. Wesstrom J, Ulfberg J, Nilsson S. Sleep apnea and hormone replacement therapy: a pilot study and a literature review. Acta Obstet Gynecol Scand. 2005;84(1):54–7.

    Article  PubMed  Google Scholar 

  9. Cori JM, O’Donoghue FJ, Jordan AS. Sleeping tongue: current perspectives of genioglossus control in healthy individuals and patients with obstructive sleep apnea. Nat Sci Sleep. 2018;10:169–79.

    Article  PubMed  PubMed Central  Google Scholar 

  10. BuSha BF, Strobel RJ, England SJ. The length-force relationship of the human genioglossus in patients with obstructive sleep apnea. Respir Physiol Neurobiol. 2002;130(2):161–8.

    Article  PubMed  Google Scholar 

  11. Brandes IF, Zuperku EJ, Dean C, et al. Retrograde labeling reveals extensive distribution of genioglossal motoneurons possessing 5-HT2A receptors throughout the hypoglossal nucleus of adult dogs. Brain Res. 2007;1132(1):110–9.

    Article  CAS  PubMed  Google Scholar 

  12. Jin XT, Cui N, Zhong W, et al. Pre- and postsynaptic modulations of hypoglossal motoneurons by alpha-adrenoceptor activation in wild-type and Mecp2(-/Y) mice. Am J Physiol Cell Physiol. 2013;305(10):C1080–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sánchez MG, Estrada-Camarena E, Bélanger N, et al. Estradiol modulation of cortical, striatal and raphe nucleus 5-HT1A and 5-HT2A receptors of female hemiparkinsonian monkeys after long-term ovariectomy. Neuropharmacology. 2011;60(4):642–52.

    Article  PubMed  Google Scholar 

  14. Park YM, Kanaley JA, Padilla J, et al. Effects of intrinsic aerobic capacity and ovariectomy on voluntary wheel running and nucleus accumbens dopamine receptor gene expression. Physiol Behav. 2016;164(Pt A):383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. ThyagaRajan S, Hima L, Pratap UP, et al. Estrogen-induced neuroimmunomodulation as facilitator of and barrier to reproductive aging in brain and lymphoid organs. J Chem Neuroanat. 2019;95:6–12.

    Article  CAS  PubMed  Google Scholar 

  16. Scharfman HE, MacLusky NJ. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol. 2006;27(4):415–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Paul AL, Pons P, Aoki A, et al. Heterogeneity of pituitary lactotrophs: immunocytochemical identification of functional subtypes. Acta Histochem. 1997;99(3):277–89.

    Article  PubMed  Google Scholar 

  18. El-Khatib YA, Sayed RH, Sallam NA, et al. 17β-Estradiol augments the neuroprotective effect of agomelatine in depressive–and anxiety-like behaviors in ovariectomized rats. Psychopharmacology. 2020;237(9):2873–86.

    Article  CAS  PubMed  Google Scholar 

  19. Sun BC, Liu L, Yang L, et al. Effect of estrogen on genioglossus and hypoglossal nucleus of female rats. Shanghai Kou Qiang Yi Xue. 2017;26(2):146–50.

    PubMed  Google Scholar 

  20. Wang W, Cui G, Jin B, et al. Estradiol Valerate and Remifemin ameliorate ovariectomy-induced decrease in a serotonin dorsal raphe-preoptic hypothalamus pathway in rats. Ann Anat. 2016;208:31–9.

    Article  PubMed  Google Scholar 

  21. Wang W, Bai W, Cui G, et al. Effects of estradiol valerate and remifemin on norepinephrine signaling in the brain of ovariectomized rats. Neuroendocrinology. 2015;101(2):120–32.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Bai W, Wang W, et al. Mechanisms underlying alterations in norepinephrine levels in the locus coeruleus of ovariectomized rats: Modulation by estradiol valerate and black cohosh. Neuroscience. 2017;354:110–21.

    Article  CAS  PubMed  Google Scholar 

  23. Bassani TB, Bartolomeo CS, Oliveira RB, et al. Progestogen-mediated neuroprotection in central nervous system disorders. Neuroendocrinology. 2023;113(1):14–35.

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Salvaterra PM, Loera S, et al. Brain-derived neurotrophic factor spares choline acetyltransferase mRNA following axotomy of motor neurons in vivo. J Neurosci Res. 1997;47(2):134–43.

    Article  CAS  PubMed  Google Scholar 

  25. Rind HB, Butowt R, von Bartheld CS. Synaptic targeting of retrogradely transported trophic factors in motoneurons: comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin. J Neurosci. 2005;25(3):539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaser AJ, Stang K, Connor NP, et al. The effect of age and tongue exercise on BDNF and TrkB in the hypoglossal nucleus of rats. Behav Brain Res. 2012;226(1):235–41.

    Article  CAS  PubMed  Google Scholar 

  27. Chan CB, Ye K. Sex differences in brain-derived neurotrophic factor signaling and functions. J Neurosci Res. 2017;95(1–2):328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu L, Dang Y, Liang LX, et al. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae. Chemosphere. 2022;297: 134234.

    Article  CAS  PubMed  Google Scholar 

  29. Scotton E, Colombo R, Reis JC, et al. BDNF prevents central oxidative damage in a chronic unpredictable mild stress model: The possible role of PRDX-1 in anhedonic behavior. Behav Brain Res. 2020;378: 112245.

    Article  CAS  PubMed  Google Scholar 

  30. Wilkerson JE, Mitchell GS. Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation. Exp Neurol. 2009;217(1):116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Remondelli P, Renna M. The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front Mol Neurosci. 2017;10:187.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jóźwiak-Bębenista M, Sokołowska P, Siatkowska M, et al. The importance of endoplasmic reticulum stress as a novel antidepressant drug target and its potential impact on CNS disorders. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14040846.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uvarov AV, Mesaeli N. Enhanced ubiquitin-proteasome activity in calreticulin deficient cells: a compensatory mechanism for cell survival. Biochim Biophys Acta. 2008;1783(6):1237–47.

    Article  CAS  PubMed  Google Scholar 

  34. Coe H, Bedard K, Groenendyk J, et al. Endoplasmic reticulum stress in the absence of calnexin. Cell Stress Chaperones. 2008;13(4):497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakamura K, Bossy-Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol. 2000;150(4):731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Zilong Liu and Shanqun Li conceived and designed the experiments. Huan Lu performed the experiments. Huan Lu and Qinhan Wu analyzed the data. Huan Lu and Qinhan Wu have contributed to manuscript preparation. Huan Lu and Qinhan Wu contributed equally to this work and shared the first authorship.

Funding

This work was supported by grants from The National Key Research and Development Program of China (No. 2018YFC1313600) and the National Natural Science Foundation of China (No. 81900086, 81570081, 81770083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zilong Liu or Shanqun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All experimental procedures conformed to the guidelines of National Institutes of Health Guide regarding the care and use of animals and were approved by the Medical Experimental Animal Administrative Committee of Shanghai Medical College of Fudan University. All effects were made to minimize animal suffering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Wu, Q., Liu, Z. et al. Impact of ovariectomy on neurotransmitter receptors BDNF/TrkB and endoplasmic reticulum molecular chaperones in rat hypoglossal nucleus. Sleep Biol. Rhythms (2024). https://doi.org/10.1007/s41105-024-00520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41105-024-00520-5

Keywords

Navigation