The effects of kiwi fruit consumption in students with chronic insomnia symptoms: a randomized controlled trial

Abstract

Insomnia is the most common sleep disorder. Although treatments such as cognitive-behavioral therapy have been shown to be effective, there are limitations in terms of effects, accessibility, and cost. It is thus of interest to supplement treatment with more accessible means to increase treatment effects. Little research exists concerning the effects of nutrition on sleep. Kiwi fruit contains rich levels of nutrients, such as antioxidants, flavonoids, carotenoids, anthocyanins, folate, and melatonin, all of which could possibly facilitate sleep. Thus, the purpose of this study was to investigate whether kiwi had beneficial effects on sleep compared to a control fruit chosen on the basis of differences in relevant nutritional content. In this randomized controlled trial, 74 students suffering from chronic insomnia symptoms were instructed to ingest either 130 g of kiwi or pear, the latter comprising the control condition, 1 h before bedtime every day for 4 weeks following 1 week of baseline assessment. Outcome measures consisted of sleep diaries and actigraphy. In addition, we administered the Bergen Insomnia Scale and Pittsburgh Sleep Questionnaire Index. Results showed that on a total of two out of 12 outcome variables (sleep quality and daytime functioning as reported using sleep diary), there was a statistically significant group × time interaction effect favoring the kiwi condition compared to pear. Although there were no such effects using objective measures, the results suggest that kiwi may possess some sleep improving properties. Strengths and limitations of the study are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Morin CM, Benca R. Chronic insomnia. Lancet. 2012;379(9821):1129–41.

    Article  PubMed  Google Scholar 

  2. 2.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th ed. 2013. American Psychiatric Association, Washington, DC.

  3. 3.

    Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev. 2002;6(2):97–111.

    Article  PubMed  Google Scholar 

  4. 4.

    Pallesen S, et al. Prevalence of insomnia in the adult Norwegian population. Sleep. 2001;24(7):771–9.

    CAS  PubMed  Google Scholar 

  5. 5.

    Pallesen S, et al. A 10-year trend of insomnia prevalence in the adult Norwegian population. Sleep Med. 2014;15:173–9.

    Article  PubMed  Google Scholar 

  6. 6.

    Sivertsen B, et al. Does insomnia predict sick leave? The Hordaland Health Study. J Psychosom Res. 2009;66:67–74.

    Article  PubMed  Google Scholar 

  7. 7.

    Sivertsen B, et al. The long-term effect of insomnia on work disability—the HUNT-2 historical cohort study. Am J Epidemiol. 2006;163:1018–24.

    Article  PubMed  Google Scholar 

  8. 8.

    Baglioni C, et al. Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. J Affect Disord. 2011;135:10–9.

    Article  PubMed  Google Scholar 

  9. 9.

    Sivertsen B, et al., Midlife insomnia and subsequent mortality: the Hordaland health study. BMC Public Health, 2014. 14:article no. 720.

    Article  PubMed  Google Scholar 

  10. 10.

    Rybarczyk B, et al. Cognitive behavioral therapy for insomnia in older adults: background, evidence, and overview of treatment protocol. Clin Gerontol. 2013;36:70–93.

    Article  Google Scholar 

  11. 11.

    Qaseem A, et al. Management of chronic insomnia disorder in adults: a clinical practice guideline from the American College of Physicians Management of Chronic Insomnia Disorder in Adults. Ann Intern Med. 2016;165:125–33.  

  12. 12.

    Edinger JD, Means MK. Cognitive-behavioral therapy for primary insomnia. Clin Psychol Rev. 2005;25(5):539–58.

    Article  PubMed  Google Scholar 

  13. 13.

    Harvey AG, NKY Tang. Cognitive behaviour therapy for primary insomnia: can we rest yet? Sleep Med Rev. 2003;7(3):237–62.

    Article  PubMed  Google Scholar 

  14. 14.

    Morselli L, et al. Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract Res Clin Endocrinol Metab. 2010;24(5):687–702.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Spiegel K, et al., Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol (1985), 2005. 99(5):2008–19.

    CAS  Article  Google Scholar 

  16. 16.

    Pieters G, et al. Sleep variables in anorexia nervosa: evolution with weight restoration. Int J Eat Disord. 2004;35(3):342–7.

    Article  PubMed  Google Scholar 

  17. 17.

    Peuhkuri K, Sihvola N, Korpela R. Diet promotes sleep duration and quality. Nutr Res. 2012;32:309–19.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ebben M, Lequerica A, Spielman A. Effects of pyridoxine on dreaming: a preliminary study. Percept Mot Skills. 2002;94:135–40.

    Article  PubMed  Google Scholar 

  19. 19.

    Ohta T, et al. Treatment of persistent sleep-wake shcedule disorders in adolescents with methylcobalamin (vitamin-B12). Sleep. 1991;14:414–8.

    CAS  PubMed  Google Scholar 

  20. 20.

    Gominak SC, Stumpf WE. The world epidemic of sleep disorders is linked to vitamin D deficiency. Med Hypotheses. 2012;79(2):132–5.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Huang W, et al. Improvement of pain, sleep, and quality of life in chronic pain patients with vitamin D supplementation. Clin J Pain. 2013;29(4):341–7.

    Article  PubMed  Google Scholar 

  22. 22.

    Kordas K, et al. The effects of iron and/or zinc supplementation on maternal reports of sleep in infants from Nepal and Zanzibar. J Dev Behav Pediatr. 2009;30:131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Held K, et al. Oral Mg(2+) supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry. 2002;35:135–43.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Spring B, et al. Effects of protein and carbohydrate meals on mood and performance—interactions with sex and age. J Psychiatr Res. 1983;17:155–67.

    CAS  Article  Google Scholar 

  25. 25.

    Hansen AL, et al. Fish consumption, sleep, daily functioning, and heart rate variability. J Clin Sleep Med. 2014;10(5):567–75.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Stepanski EJ, Wyatt JK. Use of sleep hygiene in the treatment of insomnia. Sleep Med Rev. 2003;7(3):215–25.

    Article  PubMed  Google Scholar 

  27. 27.

    Lin HH, et al. Effect of kiwifruit consumption on sleep quality in adults with sleep problems. Asia Pac J Clin Nutr. 2011;20(2):169–74.

    PubMed  Google Scholar 

  28. 28.

    Tsaluchidu S, et al. Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry. 2008;8(1):1–3.

    Article  Google Scholar 

  29. 29.

    Indrawati et al. Comparative study on pressure and temperature stability of 5-methyltetrahydrofolic acid in model systems and in food products. J Agric Food Chem. 2004;52(3):485–92.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kelly GS, Folates. supplemental forms and therapeutic applications. Altern Med Rev. 1998;3(3):208–20.

    CAS  PubMed  Google Scholar 

  31. 31.

    Hattori A, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995;35(3):627–34.

    CAS  PubMed  Google Scholar 

  32. 32.

    Buscemi N, et al. The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med. 2005;20(12):1151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bonnefont-Rousselot D, Collin F, Melatonin. Action as antioxidant and potential applications in human disease and aging. Toxicology. 2010;278(1):55–67.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Pallesen S, et al. A new scale for measuring insomnia: the Bergen Insomnia Scale. Percept Mot Skills. 2008;107(3):691–706.

    Article  PubMed  Google Scholar 

  35. 35.

    Faul F, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.

    Article  PubMed  Google Scholar 

  36. 36.

    Huang X, Mazza G. Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J Chromatogr A. 2011;1218(25):3890–9.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Szeto YT, Tomlinson B, Benzie IF. Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. Br J Nutr. 2002;87(1):55–9.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Carney CE, et al. The consensus sleep diary: standardizing prospective sleep self-monitoring. Sleep. 2012;35(2):287–302.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sadeh A. The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev. 2011;15(4):259–67.

    Article  PubMed  Google Scholar 

  40. 40.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 4th ed. 1994. American Psychiatric Association, Washington, DC.

    Google Scholar 

  41. 41.

    Buysse DJ, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Pallesen S, et al. Pittsburgh sleep quality index. Tidsskrift for Norsk Psykologforening. 2005;42(8):714.

    Google Scholar 

  43. 43.

    Orne MT. On the social psychology of the psychological experiment: with particular reference to demand characteristics and their implications. Am Psychol. 1962;17(11):776.

    Article  Google Scholar 

  44. 44.

    Rubin M, Paolini S, Crisp RJ. A processing fluency explanation of bias against migrants. J Exp Soc Psychol. 2010;46(1):21–8.

    Article  Google Scholar 

  45. 45.

    Matteson-Rusby SE, et al. Why treat insomnia? Primary Care Companion J Clin Psychiatry. 2010;12(1):PCC.08r00743.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Perlis ML, et al. Placebo effects in primary insomnia. Sleep Med Rev. 2005;9(5):381–9.

    Article  PubMed  Google Scholar 

  47. 47.

    Voderholzer U, et al. Are there gender differences in objective and subjective sleep measures? A study of insomniacs and healthy controls. Depress Anxiety. 2003;17(3):162–72.

    Article  PubMed  Google Scholar 

  48. 48.

    Lund HG, et al. The discrepancy between subjective and objective measures of sleep in older adults receiving CBT for comorbid insomnia. J Clin Psychol. 2013;69(10):1108–20.

    Article  PubMed  Google Scholar 

  49. 49.

    Carskadon MA, Dement WC. Normal human sleep: an overview. Principles Pract Sleep Med. 2005;4:13–23.

    Article  Google Scholar 

  50. 50.

    Rosenthal R. Covert communication in the psychological experiment. Psychol Bull. 1967;67(5):356.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Øystein Ottesen Nødtvedt.

Ethics declarations

Ethical approval

Regional Committee for Medical and Health Research Ethics in Western Norway No. 2014/2174/REK West.

Conflict of interest

None of the authors declares any conflicts of interest.

Funding

University of Bergen and the Regional Research Council of Norway provided funding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nødtvedt, Ø.O., Hansen, A.L., Bjorvatn, B. et al. The effects of kiwi fruit consumption in students with chronic insomnia symptoms: a randomized controlled trial. Sleep Biol. Rhythms 15, 159–166 (2017). https://doi.org/10.1007/s41105-017-0095-9

Download citation

Keywords

  • Insomnia
  • Nutrition
  • Sleep
  • Kiwi
  • Fruit
  • Randomized controlled trial