Skip to main content
Log in

Charge temperature evaluation in self-ignition events

  • Original Paper
  • Published:
Automotive and Engine Technology Aims and scope Submit manuscript

Abstract

A thermodynamic method for the evaluation of charge “parcel” temperatures at the moment of self-ignition in SI engines has been applied to a series of combustion cycles which were ignited by pre-ignition events. The temperature evaluation method is based on measurement of the degree crank angle at which the rate of heat release surpasses the background noise level and numerical integration of the Livengood–Wu integral with ignition delay relations based on Arrhenius’ parameters for activation energy, temperature and pressure. A key variable of this method is the temperature “history” prior to self-ignition as such temperature history controls the heat input into the reactive gas. Results of the method, thus, provide a means to discuss pre-ignition events in view of potential root causes for charge heating including compression heating enhanced by hot spot heat transfer, the influence of intake air temperature or further mechanisms or sources of heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heywood, J.: Internal Combustion Engine Fundamentals. McGraw-Hill International Editions, Singapore (1989)

    Google Scholar 

  2. Merker, G., Schwarz, C.: Grundlagen Verbrennungsmotoren. Springer Vieweg, Wiesbaden (2009)

    Book  Google Scholar 

  3. Yokoo T, et al. Research on the improvement of the knocking prediction accuracy by considering the effect of negative temperature coefficient for high compression ratio engine. In: Internationaler Kongress “Motorische Verbrennung”, 16./17. März, Ludwigsburg (2017)

  4. Zhou, A., Dong, T., Akih-Kumgeh, B.: Simplifying ignition delay prediction for homogeneous charge compression ignition engine design and control. Int. J. Engine Res. 17(9), 957–968 (2016)

    Article  Google Scholar 

  5. Grüneberger, P., Hirsch, A., Philipp, H., Winklhofer, E.: Flame analysis supports combustion system development in normal SI engine test operation. In: Internationaler Kongress “Motorische Verbrennung”, 16./17. März, Ludwigsburg (2017)

  6. Martin, C., et al.: Development of new test methods to describe knock and pre-ignition behaviour of fuel and oil in highly charged gasoline engines. In: Internationales Wiener Motorensymposium 2014: s.n. (2014)

  7. Pischinger, S., Hoppe, F., Krieck, M. et al.: Behaviour of fuel and oil in highly charged gasoline engines “tailor-made fuels from biomass”. In: Internationales Wiener Motorensymposium 2016: s.n. (2016)

  8. Adomeit, P., et al.: Effect of fuel and combustion system on the pre-ignition of boosted SI engines. s.l.: In: Internationales Wiener Motorensymposium (2013)

  9. Luef, R., et al.: Development of a new test procedure to determine fuel and oil impact on irregular combustion phenomena with focus on highly boosted downsized S.I. Engines. s.l. In: 23rd Aachen colloquium automobile and engine technology (2014)

  10. Spicher, U., et al.: Die Bedeutung des Motoröls bei der Entstehung der Vorentflammung. MTZ 77(1), 62–67 (2016)

    Google Scholar 

  11. Leach, B., et al.: Management of low speed pre-ignition via fuel and lubricant formulation. In: 26th Aachen colloquium automobile and engine technology: s.n. (2017)

  12. Mayer, M., et al.: Vorentflammungseinfluss des Motoröls bei hochaufgeladenen Ottomotoren mit direkter Einspritzung. MTZ 77(6), 42–47 (2016)

    Google Scholar 

  13. Lauer, T., et al.: Modellansatz zur Entsehung von Vorentflammungen. MTZ (2014). https://doi.org/10.1007/s35146-014-0020-6

    Article  Google Scholar 

  14. Kassai, M., Shiraishi, T., Noda, T.: Fundamental mechanism analysis on the underlying processes of LSPI using experimental and modeling approaches. Springer, 2018. M. Günther and M. Sens (eds.), Knocking in Gasoline Engines, https://doi.org/10.1007/978-3-319-69760-4_6

    Google Scholar 

  15. Zahdeh, A.et al. Fundamental Approach to iInvestiage Pre-Igntion in Boosted SI Engines, SAE International, https://doi.org/10.4271/2011-01-0340

    Article  Google Scholar 

  16. AVL. AVL CalcGraf - Graphical Formula Editor. USER’S GUIDE, AT2653E Rev. 10 - 05/2018

  17. Winklhofer, E, Kapus, P., Knorz, C., Moik, J. Ottomotren im Hochlasttest. 10. Tagung “Der Arbeitsprozess des Verbrennungsmotors” TU Graz, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Grüneberger.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grüneberger, P., Winklhofer, E. Charge temperature evaluation in self-ignition events. Automot. Engine Technol. 4, 93–99 (2019). https://doi.org/10.1007/s41104-019-00046-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41104-019-00046-w

Keywords

Navigation