Different hardware approaches implementing low-pressure exhaust gas recirculation during the dynamic operation of turbocharged gasoline engines

  • Daniel Langmandel
  • Hermann Rottengruber
  • Daniel Haas
  • Hannes Orlick
  • Norbert Brehm
Original Paper


External exhaust gas recirculation (EGR) provides an opportunity to increase the efficiency of turbocharged gasoline engines. Among the competing technologies and configurations, low-pressure EGR sets the biggest challenge regarding its dynamic behavior. As a result, only some of its feasible stationary potential can be used during dynamic engine operation. This limitation is mainly caused by two circumstances. On the one hand, both, the optimized EGR rate and the EGR tolerance, exhibit inhomogeneous distribution over the engine load, with low values at low loads and vice versa. On the other hand, the volume between the EGR valve and inlet valves is large for the configuration with the exhaust gas supply before the compressor, as it is the case for LP-EGR. Consequently, the time span between the EGR valve adjustment and the change of the EGR rate at the inlet valves is long in relation to the engine’s fast load dynamics. This causes a difference between the set point and actual value of the EGR rate in the case of a negative load step, which can result in low efficiency or even in an unstable engine operation point. The focus of this paper is on hardware variations designed to minimize the disadvantage of low-pressure EGR, while optimizing its efficiency during dynamic operation and preferably attaining its stationary potential. The system portfolio investigated includes different concepts known from the literature as well as self-developed solutions. The analysis of all chosen system configurations is executed theoretically at first, using 1D-CFD simulation. One selected system configuration is investigated in detail with the help of engine test bench measurements. In the end, these results are evaluated with regard to a possible series application.


Low-pressure EGR Gasoline engine Spark ignition Dynamic operation Turbocharged Efficiency Hardware variations EGR rate reduction EGR rate tolerance Stable operation Stable combustion Misfire-free operation Stationary potential Dynamic potential 







Bayrische Motorenwerke


Computational fluid dynamics


Exhaust gas recirculation


Exhaust pipe


Gamma Technologies




Intake manifold




Map based


Mean indicated pressure


Torque target


Three-way catalyst

List of symbols

\(\sigma _{\text {IMEP}}\)

Standard deviation of IMEP




Coefficient of variance

\({\text {COV}}_{\text {IMEP}}\)

Coefficient of variance of IMEP



\(m_{\text {EGR}}\)

Mass exhaust gas


Mass flow


Incoming mass flow


Outgoing mass flow

\(p_{\text {IM}}\)

Pressure intake manifold


Mean indicated pressure

\(\overline{\text {IMEP}}\)

Average IMEP


Specific gas constant





\(x_{\text {CO}_2}\)

\({\text {CO}_2}\)-concentration

\(x_{\text {EGR}}\)

EGR rate

\(x_{\text {O}_2}\)




  1. 1.
    European Parliament.: Regulation (EC) No 443/2009 of the European Parliament and of the Council of 23 April 2009 setting emission performance standards for new passenger cars as part of the Community’s integrated approach to reduce \({CO\_2}\) emissions from light-duty vehicles. EU Regulation 443/2009 (2009)Google Scholar
  2. 2.
    Bunsen, E.-P.: Beitrag zur Arbeitsprozessoptimierung hochaufgeladener Ottomotoren, Universität Magdeburg, Dissertation (2012)Google Scholar
  3. 3.
    Roth, D., Keller, P., Becker, M.: Requirements of external EGR systems for dual cam phaser turbo GDI engines, SAE technical paper 2010-01-0588 (2010)Google Scholar
  4. 4.
    Potteau, S., Lutz, P., Leroux, S., Moroz, S. et al.: Cooled EGR for a turbo SI engine to reduce knocking and fuel consumption, SAE technical paper 2007-01-3978 (2007)Google Scholar
  5. 5.
    Zhong, L., Musial, M., Reese, R., Black, G.: EGR systems evaluation in turbocharged engines, SAE technical paper 2013-01-0936 (2013)Google Scholar
  6. 6.
    van Eickels, B., Sauter, H., Kissner, G., Bückner, C., Lenz, H. P.: Trends und Wege zur Erfüllung von EURO VI/6 durch innovative AGR-Systeme, MTZ-Konferenz Ladungswechsel (2010)Google Scholar
  7. 7.
    Komiyama, K., Heywood, J.: Predicting NOx emissions and effects of exhaust gas recirculation in spark-ignition engines, SAE technical paper 730475 (1973)Google Scholar
  8. 8.
    Baruah, P., Benson, R., Balouch, S.: Performance and emission predictions of a multi-cylinder spark ignition engine with exhaust gas recirculation, SAE technical paper 780663 (1978)Google Scholar
  9. 9.
    Heywood, J.B.: Internal combustion engine fundamentals, p. 413. McGraw-Hill Inc, New York (1988)Google Scholar
  10. 10.
    Abd-Alla, G.H.: Using exhaust gas recirculation in internal combustion engines: a review. Energy Convers. Manage. 43, 1027–1042 (2001)CrossRefGoogle Scholar
  11. 11.
    Wei, H., Zhu, T., Shu, G., Tan, L., Wang, Y.: Gasoline engine exhaust gas recirculation—a review. Appl. Energy 99, 536 (2012)CrossRefGoogle Scholar
  12. 12.
    Jiang, N., Liu, J., Zhang, X., Cheng, X., Yang, Y., Chen, J., Chen, G., Zhou, J., Long, Y., Bai, J.: Study on engine performance influenced by external cooled EGR. Proceedings of the FISITA 2012 World Automotive Congress, vol 1. Advanced internal combustion engines (I). Springer, Berlin, pp 587–598 (2013)Google Scholar
  13. 13.
    Kawamoto, N., Naiki, K., Kawai, T., Shikida, T.: Development of new 1.8-liter engine for hybrid vehicles, SAE technical paper 2009- 01-1061 (2009)Google Scholar
  14. 14.
    Yonekawa, A., Ueno, M., Watanabe, O., Ishikawa, N.: Development of new gasoline engine for ACCORD plug-in hybrid, SAE technical paper 2013-01-1738 (2013)Google Scholar
  15. 15.
    Nitschke, H.: Erschlieung von Wirkungsgradpotenzialen aufgeladener Ottomotoren mittels Ladungsverdünnung Technischen Universität Carolo-Wilhelmina zu Braunschweig (2014)Google Scholar
  16. 16.
    Cloos, L.K., Glahn, C., Knigstein, A., Shin, S.: Externe Abgasrückführung am aufgeladenen Ottomotor Eine Technologiebewertung im Fahrzeug, Wiener Motorensymposium (2015)Google Scholar
  17. 17.
    Hoepke, B., Jannsen, S., Kasseris, E., Cheng, W.: EGR effects on boosted SI engine operation and knock integral correlation. SAE Int. J. Engines 5(2), 547–559 (2012)CrossRefGoogle Scholar
  18. 18.
    Diana, S., Giglio, V., Iorio, B., Police, G.: Evaluation of the effect of EGR on engine knock, SAE technical paper 982479 (1998)Google Scholar
  19. 19.
    Cairns, A., Blaxill, H., Irlam, G.: Exhaust gas recirculation for improved part and full load fuel economy in a turbocharged gasoline engine, SAE technical paper 2006-01-0047 (2006)Google Scholar
  20. 20.
    Alger, T., Gingrich J., Mangold B., Roberts C.: Cooled EGR for fuel economy and emissions improvement in gasoline engines, SAE paper 447-20105013 (2010)Google Scholar
  21. 21.
    Alger, T., Gukelberger, R., Gingrich, J., Mangold, B.: The impact of cooled EGR on peak cylinder pressure in a turbocharged, spark ignited engine, SAE Int. J. Engines 8(2) (2015)Google Scholar
  22. 22.
    Toda, T., Sakai, M., Hakariya, M., Kato T.: The new inline 4 cylinder 2.5L gasoline engine with Toyota new global architecture concept, vol 38. Internationales Wiener motor symposium (2017)Google Scholar
  23. 23.
    Kumano, K., Yamaoka, S.: Analysis of knocking suppression effect of cooled EGR in turbo-charged gasoline engine, SAE technical paper 2014-01-1217 (2014)Google Scholar
  24. 24.
    Siokos, K., Koli, R., Prucka, R., Schwanke, J., Miersch, J.: Assessment of cooled low pressure EGR in a turbocharged direct injection gasoline engine, SAE Int. J. Engines 8(4) (2015)Google Scholar
  25. 25.
    Kapus, P., Glanz, R.: Brennkraftmaschine, Patent WO2007056784 A2 (2007)Google Scholar
  26. 26.
    Styles, D.J., Hilditch, J., Ruona, W.C.: Fixed EGR rate system, Patent US 2012/0023937 A1 (2011)Google Scholar
  27. 27.
    Cunningham, R.W.M., Pursifull, R.D.M., Russell, J.D.O., Surnilla, G.M., VanDerWege, B.A.M.: Doppel-Drossel zur verbesserten Tip-out-Stabilität in einem aufgeladenen Motorsystem, Patent DE102011002461A1 (2011)Google Scholar
  28. 28.
    Thewes, M., Baumgarten, H., Nijs, M., Hoppe, P.: Future fuel consumption and emission concepts for boosted gasoline engines. Motor und Umwelt 26 (2014)Google Scholar
  29. 29.
    Thewes, M.: Abgasrückführungssystem für eine Verbrennungskraftmaschine und Verfahren zum Betreiben eines solchen Abgasrückführungssystems, Patent DE102014109805A1 (2016)Google Scholar
  30. 30.
    VDI: VDI-Wärmeatlas. Springer, Berlin, Heidelberg, Wiesbaden (2005)Google Scholar
  31. 31.
    Hoffmeyer, H., Montefrancesco, E., Beck, L., Willand, J., Ziebart, F., Mauss, F.: CARE catalytic reformated exhaust gases in turbocharged DISI engines, SAE-paper 2009-01-0503 (2009)Google Scholar
  32. 32.
    Dönitz, C., Wabbals, D., Brehm, N., Kempny, R.: Responseverbesserung durch Drucklufteinblasung bei aufgeladenen Ottomotoren, Ladungswechsel im Verbrennungsmotor, vol 9 (2016)Google Scholar
  33. 33.
    Eichlseder, H., Klüting, M., Piock, W.F.: Grundlagen und Technologien des Ottomotors. Springer, Berlin (2008)Google Scholar
  34. 34.
    Surnilla, G., Soltis, R., Hilditch, J., House, C., Clark, T., Gerhart, M.: Intake oxygen sensor for EGR measurement, SAE technical paper series 2016-01-1070 (2016)Google Scholar
  35. 35.
    Pischinger, S.: Verbrennungskraftmaschinen II. Vorlesungsumdruck, RWTH Aachen, Aachen (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BMW GroupMunichGermany
  2. 2.Institute of Mobile Systems (IMS)Otto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations