Skip to main content
Log in

Development of a Solar Energy-Based Prototype, CyanoClean, for Arsenic Removal from Groundwater Using Cyanobacterial Consortium

  • Research
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

A cost-effective acrylic prototype, called CyanoClean, was developed for the growth of cyanobacterial consortium (Oscillatoria, Phormidium, and Gloeotrichia) and for removing arsenic (As) from water. The growth conditions for cyanobacterial growth were optimized by analyzing the increase in biomass (mg d−1). The optimum conditions for cyanobacteria growth were pH, 7.6; initial cyanobacterial biomass, 10 g L−1; arsenite [As(III)], 400 µΜ (30,000 µg L−1); and arsenate [As(V)], 600 µM (45,000 µg L−1). The concentration- and duration-dependent experiments were conducted in CyanoClean to examine the As removal potential of the consortium. The results demonstrated As removal to be in the range of 39–69% and 9–33%, respectively, from As(III) and As(V)-contaminated water. In the field testing of CyanoClean, a total of 150 g of the cyanobacterial consortium was used to treat 15 L of As-contaminated groundwater (102.43 µg As L−1). Arsenic reduction was monitored at a flow rate of 3 L h−1 for 15 h. In the field experiment, the cyanobacterial consortium reduced As concentration in groundwater from 102.43 to < 10 µg L−1 at 7 h in natural sunlight while at 10 h in shaded conditions under artificial light. The CyanoClean prototype is a simple design that can be scaled up for application at a small- to medium-sized land of about one hectare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Amin A, Parvin F, Chakraborty J, Kim YI (2021) Cyanobacteria mediated heavy metal removal: a review on mechanism, biosynthesis, and removal capability. Environ Technol Rev 10:44–57

    Article  CAS  Google Scholar 

  2. Angelaalincy M, Nishtha P, Ajithkumar V, Ashokkumar B, Moorthy IM, Brindhadevi K, Chi NT, Pugazhendhi A, Varalakshmi P (2023) Phycoremediation of arsenic and biodiesel production using green microalgae Coelastrella Sp M60–an integrated approach. Fuel 333:126427

    Article  CAS  Google Scholar 

  3. Aravind MK, Vignesh NS, Gayathri S, Anjitha N, Athira KM, Gunaseelan S, Arunkumar M, Sanjaykumar A, Karthikumar S, Moorthy IM, Ashokkumar B (2022) Review on rewiring of microalgal strategies for the heavy metal remediation-a metal specific logistics and tactics. Chemosphere 313:137310

    Article  PubMed  Google Scholar 

  4. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bansal A, Shinde O, Sarkar S (2018) Industrial wastewater treatment using phycoremediation technologies and co-production of value-added products. J Biodegrad Bioremediat 9:428

    Article  Google Scholar 

  6. Canizales S, Sliwszcinka M, Russo A, Bentvelzen S, Temmink H, Verschoor AM, Wijffels RH, Janssen M (2021) Cyanobacterial growth and cyanophycin production with urea and ammonium as nitrogen source. J Appl Phycol 33:3565–3577

    Article  CAS  Google Scholar 

  7. Chakdar H, Thapa S, Srivastava A, Shukla P (2022) Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. J Hazard Mater 424:127609

    Article  CAS  PubMed  Google Scholar 

  8. Che F, Du M, Yan C (2018) Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels. J Environ Sci 66:41–49

    Article  CAS  Google Scholar 

  9. Chen J, Rosen BP (2020) The arsenic methylation cycle: how microbial communities adapted methylarsenicals for use as weapons in the continuing war for dominance. Front Environ Sci 8:43

    Article  CAS  Google Scholar 

  10. Ding Y, Wang Y, Liu X, Song X (2020) Improving nutrient and organic matter removal by novel integration of a high-rate algal pond and submerged macrophyte pond. Pol J Environ Stud 29:997–1001

    Article  CAS  Google Scholar 

  11. Duxbury AC, Yentsch CS (1956) Plankton pigment nomographs. J Mar Res 15:93–101

    Google Scholar 

  12. Dwivedi S, Tripathi RD, Rai UN, Srivastava S, Mishra S, Shukla MK, Gupta AK, Sinha S, Baghel V, Gupta DK (2006) Dominance of algae in Ganga water polluted through fly-ash leaching: metal bioaccumulation potential of selected algal species. Bull Environ Contam Toxicol 77:427–436

    Article  CAS  PubMed  Google Scholar 

  13. Dwivedi S, Srivastava S, Mishra S, Dixit B, Kumar A, Tripathi RD (2008) Screening of native plants and algae growing on fly-ash affected areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India for accumulation of toxic heavy metals. J Hazard Mater 158:359–365

    Article  CAS  PubMed  Google Scholar 

  14. Dwivedi S, Srivastava S, Mishra S, Kumar A, Tripathi RD, Rai UN, Dave R, Tripathi P, Chakrabarty D, Trivedi PK (2010) Characterization of native microalgal strains for their chromium bioaccumulation potential: phytoplankton response in polluted habitats. J Hazard Mater 173:95–101

    Article  CAS  PubMed  Google Scholar 

  15. Gusman SG, Oliveira JA, Fernanda S, Farnese SF, Cambraia J (2013) Arsenate and arsenite, the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol Plant. 35:1201–1209

    Article  CAS  Google Scholar 

  16. Hasegawa H, Akhyar O, Omori Y, Kato Y, Kosugi C, Miki O, Mashio AS, Papry RI (2022) Role of Fe plaque on arsenic biotransformation by marine macroalgae. Sci Total Environ 802:149776

  17. Hoang MN, Le Vo P, Bui TV, Hung P, Ha QK (2022) Health risk assessment of arsenic in drinking groundwater: a case study in a central high land area of Vietnam. IOP Conf Ser Earth Environ Sci 964:012010

    Article  Google Scholar 

  18. Huang WJ, Wu CC, Chang WC (2014) Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir. Environ Monit Assess 186:805–814

    Article  CAS  PubMed  Google Scholar 

  19. Hussain MM, Wang J, Bibi I, Shahid M, Niazi NK, Iqbal J, Mian IA, Shaheen SM, Bashir S, Shah NS, Hina K, Rinklebe J (2021) Arsenic speciation and biotransformation pathways in the aquatic ecosystem: the significance of algae. J Hazard Mater. 403:124027

  20. Indian Agricultural Census (2015–2016) All India report on number and area of operational holdings, Ministry of Agriculture & Farmers Welfare, Government of India. https://agcensus.nic.in/document/agcen1516/T1_ac_2015_16.pdf . Accessed on 29 Mar 2022

  21. Jain M, Gadre R (2004) Inhibition of δ-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening. J Plant Physiol 161:251–255

    Article  CAS  PubMed  Google Scholar 

  22. Jain N, Maiti A (2021) Arsenic adsorbent derived from the ferromanganese slag. Environ Sci Pollut Res 28:3230–3242

    Article  CAS  Google Scholar 

  23. Ji MK, Yun HS, Park S, Lee H, Park YT, Bae S, Ham J, Choi J (2015) Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Bioresour Technol 179:624–628

    Article  CAS  PubMed  Google Scholar 

  24. Kavitha S, Yukesh Kannah R, Rajesh Banu J, Kaliappan S, Johnson M (2017) Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance. Bioresour Technol 244:1367–1375

    Article  CAS  PubMed  Google Scholar 

  25. Koul B, Taak P (2018) Biotechnological strategies for effective remediation of polluted soils. Springer, Singapore. 978-981-13-2420-8

  26. Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S (2018) Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation n plants. Chemosphere 211:397–406

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Luo T, Liu J (2023) Field and laboratory investigations on factors affecting the diel variation of arsenic in Huangshui Creek from Shimen Realgar Mine, China: implications for arsenic transport in an alkali stream. Environ Geochem Health 45:687–705

    Article  CAS  PubMed  Google Scholar 

  28. Ma J, Mi Y, Li Q, Chen L, Du L, He L, Lei M (2016) Reduction, methylation, and translocation of arsenic in Panax notoginseng grown under field conditions in arsenic contaminated soils. Sci Total Environ 550:893–899

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Majumdar A, Upadhyay MK, Giri B, Srivastava S, Srivastava AK, Jaiswal MK, Bose S (2021) Arsenic dynamics and flux assessment under drying-wetting irrigation and enhanced microbial diversity in paddy soils: a four-year study in Bengal delta plain. J Hazard Mater 409:124443

    Article  CAS  Google Scholar 

  30. Mao Q, Xie Z, Pei F, Irshad S, Issaka S, Randrianarison G (2022) Indigenous cyanobacteria enhances remediation of arsenic-contaminated soils by regulating physicochemical properties, microbial community structure and function in soil microenvironment. Sci Total Environ 860:160543

    Article  PubMed  Google Scholar 

  31. Mishra S, Cheng L, Maiti A (2021) The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: a comprehensive review. J Environ Chem Eng 9:104901

    Article  CAS  Google Scholar 

  32. Miyashita SI, Murota C, Kondo K, Fujiwara S, Tsuzuki M (2015) Arsenic metabolism in cyanobacteria. Environ Chem 13:577–589

    Article  Google Scholar 

  33. Nagarajan D, Lee DJ, Chen CY, Chang JS (2020) Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective. Bioresour Technol 302:122817

    Article  CAS  PubMed  Google Scholar 

  34. Nagra MA, Natasha N, Bibi I, Tariq TZ, Naz R, Ansar S, Shahid M, Murtaza B, Imran M, Khalid MS, Masood N, Shah GM, Niazi NK, Dumat C (2023) Biowaste-based sorbents for arsenic removal from aqueous medium and risk assessment. Environ Geochem Health 45(12):9017–9028

  35. Naveed S, Li C, Zhang J, Zhang C, Ge Y (2020) Sorption and transformation of arsenic by extracellular polymeric substances extracted from Synechocystis sp. PCC6803. Ecotoxicol Environ Saf 206:111200

    Article  CAS  PubMed  Google Scholar 

  36. Odling G, Chatzisymeon E, Karve P, Ogale S, Ivaturi A, Robertson N (2020) Naturally derived carbon for E. Coli and arsenic removal from water in rural India. Environ Technol Innov 18:100661

    Article  Google Scholar 

  37. Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteome 75:921–937

    Article  CAS  Google Scholar 

  38. Pandey S, Narayanan I, Vinayagam R, Selvara R, Varadavenkatesan T, Pugazhendhi A (2023) A review on the effect of blue green 11 medium and its constituents on microalgal growth and lipid production. J Environ Chem Eng 11(3):109984

  39. Patel A, Tiwari S, Prasad SM (2018) Toxicity assessment of arsenate and arsenite on growth, chlorophyll fluorescence and antioxidant machinery in Nostoc muscorum. Ecotoxicol Environ Saf 157:369–379

    Article  CAS  PubMed  Google Scholar 

  40. Patel A, Tiwari S, Prasad SM (2021) Effect of time interval on arsenic toxicity to paddy field cyanobacteria as evident by nitrogen metabolism, biochemical constituent, and exopolysaccharide content. Biol Trace Elem Res 199:2031–2046

    Article  CAS  PubMed  Google Scholar 

  41. Pathak J, Rajneesh, Maurya PK, Singh SP, Haeder DP, Sinha RP (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Environ Sci 6:7

    Article  Google Scholar 

  42. Priatni S, Ratnaningrum D, Warya S, Audina E (2018) Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp. IOP Conf Ser Environ Earth Sci 160:012006

    Article  Google Scholar 

  43. Priyadharshini SD, Suresh Babu P, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N (2021) Phycoremediation of wastewater for pollutant removal: a green approach to environmental protection and long-term remediation. Environ Pollut 290:117989

    Article  Google Scholar 

  44. Rajesh Banu J, Preethi, Kavitha S, Gunasekaran M, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302:122822

    Article  CAS  PubMed  Google Scholar 

  45. Rebello S, Sivaprasad MS, Anoopkumar AN, Jayakrishnan L, Aneesh EM, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Pandey A (2021) Cleaner technologies to combat heavy metal toxicity. J Environ Manage 296:113231

  46. Reijnders L (2018) Hazardous waste incineration ashes and their utilization. In: Meyers R (ed) Encyclopedia of sustainability science and technology. Springer, New York. 978-1-4939-2493-6

  47. Riskuwa-Shehu M, Ismail H, Sulaiman M (2019) Biosorption of heavy metals by Oscillatoria species. Microbiol Res J Int 27:1–8

    Article  Google Scholar 

  48. Saintilnord WN, Fondufe-Mittendorf Y (2021) Arsenic-induced epigenetic changes in cancer development. Semin Cancer Biol 76:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, Tao Y (2020) Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol 298:122476

    Article  CAS  PubMed  Google Scholar 

  50. Sellami K, Couvert A, Nasrallah N, Maachi R, Abouseoud M, Amrane A (2022) Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: a review. Sci Total Environ 806:150500

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Shah AH, Shahid M, Khalid S, Natasha, Shabbir Z, Bakhat HF, Murtaza B, Farooq A, Akram M, Shah GM, Nasim W (2019) Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environ Geochem Health 42:121–133

    Article  PubMed  Google Scholar 

  52. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  53. Shehzad MT, Sabir M, Zia-ur-Rehman M, Zia MA, Naidu R (2022) Arsenic concentrations in soil, water, and rice grains of rice-growing areas of Punjab, Pakistan: multivariate statistical analysis. Environ Monit Assess 194:1–6

    Article  Google Scholar 

  54. Shukla A, Srivastava S (2017) Emerging aspects of bioremediation of arsenic. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, India, pp 395–407

    Chapter  Google Scholar 

  55. Shukla A, Srivastava S (2019) A review of phytoremediation prospects for arsenic contaminated water and soil. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites: market opportunities in sustainable phytoremediation. Elsevier, Netherlands, pp 243–254

    Chapter  Google Scholar 

  56. Shukla A, Awasthi S, Chauhan R, Srivastava S (2020) The status of arsenic contamination in India. In: Srivastava S (ed) Arsenic in drinking water and food. Springer Nature, Singapore, pp 1–12

    Google Scholar 

  57. Shukla A, Gupta A, Srivastava S (2023) Bacterial consortium (Priestia Endophytica NDAS01F, Bacillus licheniformis NDSA24R, and Priestia Flexa NDAS28R) and thiourea mediated amelioration of arsenic stress and growth improvement of Oryza sativa L. Plant Physiol Biochem 195:14–24

    Article  CAS  PubMed  Google Scholar 

  58. Singh NK, Upadhyay AK, Rai UN (2017) Algal technologies for wastewater treatment and biofuels production: an integrated approach for environmental management. In: Gupta SK, Malik A, Bux F (eds) Algal biofuels. Springer, Cham, pp 97–107

    Chapter  Google Scholar 

  59. Singh S, Karwadiya J, Srivastava S, Patra PK, Venugopalan VP (2021) Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecol Eng 175:106476

    Article  Google Scholar 

  60. Singh S, Shukla A, Srivastava S, Kamble GS, Patra PK, Venugopalan VP (2023) An evaluation of arsenic contamination status and its potential health risk assessment in villages of Nadia and North 24 Parganas, West Bengal, India. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-28542-5

  61. Srivastava AK, Bhargava P, Kumar A, Rai LC, Neilan BA (2009) Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Systems 5(1):1–7

  62. Srivastava S, Pathak S, Ponsin M, Hensawang S, Chanpiwat P, Yoeurn C, Phan K (2021) A review on sustainable solutions for tackling arsenic-rice problem in South and Southeast Asia. Crop Pasture Sci 73:149–159

    Article  Google Scholar 

  63. Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind Eng Chem Res 55:4363–4389

    Article  CAS  Google Scholar 

  64. Ungureanu N, Vladut V, Popa Ivanciu M (2021) Nutrient removal from wastewater by microalgae Chlorella vulgaris. Acta Tech Corvin Bull Eng 14:331–340

    Google Scholar 

  65. Upadhyay AK, Mandotra SK, Kumar N, Singh NK, Singh L, Rai UN (2016) Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis Sp. Bioresour Technol 221:430–437

    Article  CAS  PubMed  Google Scholar 

  66. Upadhyay MK, Yadav P, Shukla A, Srivastava S (2018) Utilizing the potential of microorganisms for managing arsenic contamination: a feasible and sustainable approach. Front Environ Sci 6:24

    Article  Google Scholar 

  67. Upadhyay MK, Majumdar A, Kumar JS, Srivastava S (2020) Arsenic in rice agro-ecosystem: solutions for safe and sustainable rice production. Front Sustain Food Syst 4:53

    Article  Google Scholar 

  68. Upadhyay SK, Devi P, Kumar V, Pathak HK, Kumar P, Rajput VD, Dwivedi P (2023) Efficient removal of total arsenic (As3+/5+) from contaminated water by novel strategies mediated iron and plant extract activated waste flowers of marigold. Chemosphere 313:137551

    Article  CAS  PubMed  Google Scholar 

  69. Wang NX, Li Y, Deng XH, Miao AJ, Ji R, Yang LY (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47:2497–2506

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, Wang S, Xu P, Liu C, Liu M, Wang Y, Wang C, Zhang C, Ge Y (2015) Review of arsenic speciation, toxicity and metabolism in microalgae. Rev Environ Sci Biotechnol 14:427–451

    Article  CAS  Google Scholar 

  71. Wollman F, Dietze S, Ackermann JU, Bley T, Walther T, Steingroewer J, Krujatz F (2019) Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci 19:860–871

    Article  Google Scholar 

  72. Wongrod S, Simon S, van Hullebusch ED, Lens PN, Guibaud G (2019) Assessing arsenic redox state evolution in solution and solid phase during as(III) sorption onto chemically-treated sewage sludge digestate biochars. Bioresour Technol 275:232–238

    Article  CAS  PubMed  Google Scholar 

  73. Xiao Z, Li X, Huo S (2022) Arsenic accumulation and biotransformation affected by nutrients (N and P) in common blooming-forming Microcystis Wesenbergii (Komárek) Komárek ex Komárek (Cyanobacteria). Water 14:245

    Article  CAS  Google Scholar 

  74. Yeung T, Wotton A, Walsh L, Aldous L, Conibeer G, Patterson R (2019) Repurposing commercial anaerobic digester wastewater to improve cyanobacteria cultivation and digestibility for bioenergy systems. Sustain Energy Fuels 3:841–849

    Article  CAS  Google Scholar 

  75. Zutshi S, Bano F, Ningthoujam M, Habib K, Fatma T (2014) Metabolic adaptations to arsenic-induced oxidative stress in Hapalosiphon fontinalis-339. Int J Innov Res Sci Eng Tech 3:9386–9394

    Google Scholar 

Download references

Acknowledgements

SS acknowledges financial support from the Design & Innovation Centre, Banaras Hindu University (DIC, BHU) (DIC BHU/SS-Project/2017-18/1007) and Institute of Eminence (IOE) (Scheme No. 6031), Banaras Hindu University.

Author information

Authors and Affiliations

Authors

Contributions

AS designed the prototype, performed all experiments and prepared the draft of the MS. SS helped in preparing the draft of the MS. SS (Sudhakar Srivastava) designed the prototype, supervised the whole experiment, performed statistical analysis and finalized the MS for submission.

Corresponding author

Correspondence to Sudhakar Srivastava.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Singh, S. & Srivastava, S. Development of a Solar Energy-Based Prototype, CyanoClean, for Arsenic Removal from Groundwater Using Cyanobacterial Consortium. Water Conserv Sci Eng 9, 13 (2024). https://doi.org/10.1007/s41101-024-00245-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-024-00245-z

Keywords

Navigation