Skip to main content
Log in

Chitosan from Waste Marine Sources Immobilized Silica: Differential Pulse Voltammetric Determination of Heavy Metal Ions from Industrial Effluent

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

In availability of marine products India is one of the top most countries in the world. Approximately 40–50% of the total production consists of waste in the form of shell. Marine product shell is rich in chitin, chitosan, and cellulose. The important characteristic of these constituents is capability to adsorb heavy metals. Heavy metal pollution is one of the most serious environmental (effluent) problems. The objective of this study is to understand removal of heavy metal using chitosan immobilized on silica using electroanalytical technique. Adsorption conditions such as pH, amount of adsorbent, contact time, effect of eluent type, flow rate of sample solution, etc. are optimized using differential pulse voltammetric measurements. The best recovery results were observed at pH – 5 and 6, 200 mg adsorbent and 120 min contact time, 1.0 M HCl eluent, 0.2 ml/min flow rate. The devised procedure applied for determination of Zn (II), Cu (II), Cd(II), Pb(II), Fe(II), and Mn(II) in industrial effluent was reproducible with a relative standard deviation of 0.8%. This study highlighted that chitosan immobilized on silica from waste material is a promising adsorbent in removing heavy metals from wastewater and effectively estimated by differential pulse voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FAAS:

Flame atomic absorption spectrophotometry

ICP-AES:

Inductively coupled plasma-atomic emission spectrophotometry

HMDE:

Hanging mercury drop electrode

References

  1. Akpor OB, Ohiobor GO, Olaolu TD (2014) Heavy metal pollutants in wastewater effluents : sources , effects and remediation 2. Sources of Heavy Metals Int 2(4):37–43, Available from. https://doi.org/10.11648/j.abb.20140204.11

    Article  Google Scholar 

  2. Jain DSMCK, Yadav AK (2017) Removal of heavy metals from emerging cellulosic low-cost adsorbents : a review. Appl Water Sci 7(5):2113–2136. Available from. https://doi.org/10.1007/s13201-016-0401-8

    Article  CAS  Google Scholar 

  3. Bashir A, Ahmad L, Sozia M, Taniya A, Mudasir M, Bhat A (2018; Available from) Removal of heavy metal ions from aqueous system by ion - exchange and biosorption methods. Environ Chem Lett [Internet]. https://doi.org/10.1007/s10311-018-00828-y

  4. Anuar M, Norli K, Umi I, Osman N, Alrozi R (2019; Available from) Sustainable separation of Cu ( II ) and Cd ( II ) from aqueous solution by using solvent extraction technique with di - 2 - ethylhexylphosphoric acid ( D2EHPA ) as carrier : optimization study. Appl Water Sci [Internet]. https://doi.org/10.1007/s13201-019-1008-7

  5. Esmaeili A, Mobini M, Eslami H (2019) Removal of heavy metals from acid mine drainage by native natural clay minerals , batch and continuous studies. Appl Water Sci [Internet] 9(4):1–6. Available from. https://doi.org/10.1007/s13201-019-0977-x

    Article  CAS  Google Scholar 

  6. Hargreaves AJ, Vale P, Whelan J, Alibardi L, Constantino C, Dotro G et al (2018) Coagulation – flocculation process with metal salts , synthetic polymers and biopolymers for the removal of trace metals ( Cu , Pb , Ni , Zn ) from municipal wastewater. Clean Technol Environ Policy [Internet] 20(2):393–402. Available from. https://doi.org/10.1007/s10098-017-1481-3

    Article  CAS  Google Scholar 

  7. Matsuura KCKT, Ethylenediamine EDA (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Appl Water Sci [internet] 8(1):1–30. Available from. https://doi.org/10.1007/s13201-018-0661-6

    Article  CAS  Google Scholar 

  8. Farhan SN, Khadom AA (2015) Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem [Internet] 6:119–130. Available from:. https://doi.org/10.1007/s40090-015-0038-8

    Article  CAS  Google Scholar 

  9. Ates N, Uzal N (2018. ;(Sergey 2011) Available from) Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration. https://doi.org/10.1007/s11356-018-2345-z

  10. Hegazi HA (2013) Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J [Internet] 9(3):276–282. Available from:. https://doi.org/10.1016/j.hbrcj.2013.08.004

    Article  Google Scholar 

  11. Dula T, Duke TN (2019;(January) Available from) Removal methods of heavy metals from laboratory wastewater removal methods of heavy metals from laboratory wastewater. https://doi.org/10.7176/JNSR

  12. Kumar GVSRP, Avinash K, Bharath M, Srinivasa YK (2019) Removal of Cu ( II ) using three low - cost adsorbents and prediction of adsorption using artificial neural networks. Appl Water Sci [internet] 9(3):1–9. Available from. https://doi.org/10.1007/s13201-019-0924-x

    Article  CAS  Google Scholar 

  13. Ronda A, Pe A, Calero M. Development and characterization of biosorbents to remove heavy metals from aqueous solutions by chemical treatment of olive stone. 2013; Available from:.https://doi.org/10.1021/ie401246c

  14. Özsin G, Kılıç M, Apaydın E, Ayşe V, Pütün E (2019) Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption : equilibrium , kinetic , and thermodynamic studies. Appl Water Sci [Internet] 9(3):1–14. Available from. https://doi.org/10.1007/s13201-019-0942-8

    Article  CAS  Google Scholar 

  15. Lee MG, Lim JH, Kam SK (2002) Biosorption characteristics in the mixed heavy metal solution by biosorbents of marine brown algae. Korean J Chem Eng 19(2):277–284

    Article  CAS  Google Scholar 

  16. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  17. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  Google Scholar 

  18. Jin L, Bai R (2002) Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir. 18(25):9765–9770

    Article  CAS  Google Scholar 

  19. De Castro Dantas TN, Neto AAD, Moura MCPDA, Neto ELB, De Paiva Telemaco E (2001) Chromium adsorption by chitosan impregnated with microemulsion. Langmuir. 17(14):4256–4260

    Article  CAS  Google Scholar 

  20. Boddu VM, Abburi K, Talbott JL, Smith ED (2003) Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ Sci Technol 37(19):4449–4456

    Article  CAS  Google Scholar 

  21. Minamisawa M, Minamisawa H, Yoshida S, Takai N (2007) Adsorption behavior of heavy metals on biomaterials. J Agric Food Chem 52(18):5606–5611

    Article  CAS  Google Scholar 

  22. Nithya R, Sudha PN (2017) Removal of heavy metals from tannery effluent using chitosan-g-poly(butyl acrylate)/bentonite nanocomposite as an adsorbent. Text Cloth Sustain [Internet] 2(1):1–8. Available from:. https://doi.org/10.1186/s40689-016-0018-1

    Article  Google Scholar 

  23. Ablouh E, Hanani Z, Eladlani N, Rhazi M, Taourirte M (2019) Chitosan microspheres/sodium alginate hybrid beads: an efficient green adsorbent for heavy metals removal from aqueous solutions. Sustain Environ Res 29(1):1–11

    Article  CAS  Google Scholar 

  24. Mohanasrinivasan V, Mishra M, Paliwal JS, Singh SK, Selvarajan E, Suganthi V et al (2014) Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech 4(2):167–175

    Article  CAS  Google Scholar 

  25. Seyedmohammadi J, Motavassel M, Maddahi MH, Nikmanesh S (2016) Application of nanochitosan and chitosan particles for adsorption of Zn(II) ions pollutant from aqueous solution to protect environment. Model Earth Syst Environ 2(3):1–12

    Article  Google Scholar 

  26. Abdel Salam OE, Reiad NA, ElShafei MM (2011) A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. J Adv Res [Internet] 2(4):297–303. Available from:. https://doi.org/10.1016/j.jare.2011.01.008

    Article  Google Scholar 

  27. Al-Manhel AJ, Al-Hilphy ARS, Niamah AK (2018) Extraction of chitosan, characterisation and its use for water purification. J Saudi Soc Agric Sci [internet] 17(2):186–190. Available from. https://doi.org/10.1016/j.jssas.2016.04.001

    Article  Google Scholar 

  28. Karve M, Choudhary B (2017) Penicillium chrysogenum immobilised silica: flame atomic absorption spectrometric Pb determination in industrial effluent, sludge and food samples. Int J Environ Sci Technol 14(5):993–998

    Article  CAS  Google Scholar 

  29. Khajeh M, Pourkarami A, Arefnejad E, Bohlooli M, Khatibi A, Ghaffari-Moghaddam M et al (2017) Application of chitosan-zinc oxide nanoparticles for lead extraction from water samples by combining ant colony optimization with artificial neural network. J Appl Spectrosc 84(4):716–724

    Article  CAS  Google Scholar 

  30. Martins AO, Da Silva EL, Laranjeira MCM, De Fávere VT (2005) Application of chitosan functionalized with 8-hydroxyquinoline: determination of lead by flow injection flame atomic absorption spectrometry. Microchim Acta 150(1):27–33

    Article  CAS  Google Scholar 

  31. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091

    Article  CAS  Google Scholar 

  32. Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D (2015) Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Res Lett 10(1):1–10

    Article  CAS  Google Scholar 

  33. Olefir YV, Sakanyan EI, Ladygina LA, Shchukin VM (2018) Development of a sample-preparation procedure for quantitative determination of lead in sugars by inductively coupled-plasma—atomic-emission spectrometry (ICP-AES). Pharm Chem J 52(2):171–174

    Article  CAS  Google Scholar 

  34. El Mhammedi MA, Achak M, Bakasse M, Chtaini A (2009) Electroanalytical method for determination of lead(II) in orange and apple using kaolin modified platinum electrode. Chem Int 76(8):1130–1134. Available from:. https://doi.org/10.1016/j.chemosphere.2009.04.017

    Article  CAS  Google Scholar 

  35. Moutcine A, Chtaini A (2018) Electrochemical determination of trace mercury in water sample using EDTA-CPE modified electrode. Sens Bio-Sensing Res [internet] 17(January):30–35. Available from. https://doi.org/10.1016/j.sbsr.2018.01.002

    Article  Google Scholar 

  36. Thanh NM, Van Hop N, Luyen ND, Phong NH, Toan TTT, Mai HD (2019) Simultaneous determination of Zn(II), Cd(II), Pb(II), and Cu(II) using differential pulse anodic stripping voltammetry at a Bismuth film-modified electrode. Adv Mater Sci Eng 2019:11

    Article  CAS  Google Scholar 

  37. Li Y, Wahdat F, Neeb R (1995) Digestion-free determination of heavy metals (Pb, Cd, Cu) in honey using anodic stripping differential pulse voltammetry and potentiometric stripping analysis. Fresenius J Anal Chem 351(7):678–682

    Article  CAS  Google Scholar 

  38. Wu K-H, Lo H-M, Wang J-C, Yu S-Y, Yan B-D (2017) Electrochemical detection of heavy metal pollutant using crosslinked chitosan/carbon nanotubes thin film electrodes. Mater Express 7(1):15–24

    Article  CAS  Google Scholar 

  39. Bassie T, Siraj K, Tesema TE (2012) Determination of heavy metal ions on glassy carbon electrode modified with antimony. Adv Sci Eng Med 5(3):275–284

    Article  CAS  Google Scholar 

  40. Zeng A, Liu E, Tan SN, Zhang S, Gao J (2002) Stripping voltammetric analysis of heavy metals at nitrogen doped diamond-like carbon film electrodes. Electroanalysis 14(18):1294–1298

    Article  CAS  Google Scholar 

  41. Ostapczuk P, Valenta P, Rützel H, Nürnberg HW (1987) Application of differential pulse anodic stripping voltammetry to the determination of heavy metals in environmental samples. Sci Total Environ 60(C):1–16

    Article  CAS  Google Scholar 

  42. Osuna RM, Ferrón ICC, Vercelli B, Hernández V, Zotti G, Navarrete JTL (2010) Determination of trace metals by differential pulse voltammetry at chitosan modified electrodes. Port Electrochim Acta 28(1):63–71

    Article  Google Scholar 

  43. Manisankar P, Vedhi C, Selvanathan G, Arumugam P (2008) Differential pulse stripping voltammetric determination of heavy metals simultaneously using new polymer modified glassy carbon electrodes. Microchim Acta 163(3–4):289–295

    Article  CAS  Google Scholar 

  44. Palisoc ST, Estioko LCD, Natividad MT (2018). Voltammetric determination of lead and cadmium in vegetables by graphene paste electrode modified with activated carbon from coconut husk. Mater Res Express 5(8)

  45. Budnyak T, Tertykh V, Yanovska E. (2014) Chitosan immobilized on silica surface for wastewater treatment. Mater Sci 20(2)

  46. Mustafiz S, Rahaman MS, Kelly D, Tango M, Islam MR (2003) The application of fish scales in removing heavy metals from energy-produced waste streams: the role of microbes. Energy Sources 25(9):905–916

    Article  CAS  Google Scholar 

  47. Boulaiche W, Hamdi B, Trari M (2019) Removal of heavy metals by chitin: equilibrium, kinetic and thermodynamic studies. Appl Water Sci [internet] 9(2):1–10. Available from. https://doi.org/10.1007/s13201-019-0926-8

    Article  CAS  Google Scholar 

  48. Sun DT, Peng L, Reeder WS, Moosavi SM, Tiana D, Britt DK, Oveisi E, Queen WL (2018) Rapid, selective heavy metal removal from water by a metal-organic framework/polydopamine composite. ACS Cent Sci 4(3):349–356

    Article  CAS  Google Scholar 

  49. Boudouaia N, Bengharez Z, Jellali S (2019) Preparation and characterization of chitosan extracted from shrimp shells waste and chitosan film: application for eriochrome black T removal from aqueous solutions. Appl Water Sci [internet] 9(4):1–12. Available from. https://doi.org/10.1007/s13201-019-0967-z

    Article  CAS  Google Scholar 

  50. Burrows F, Louime C, Abazinge M, Onokpise O (2007) Extraction and evaluation of chitosan from crab exoskeleton as a seed fungicide and plant growth enhancer. Am Eurasian J Agric Environ Sci 2(2):103–111

    Google Scholar 

  51. Blachnio M, Budnyak TM, Derylo-Marczewska A, Marczewski AW, Tertykh VA (2018) Chitosan-silica hybrid composites for removal of sulfonated azo dyes from aqueous solutions. Langmuir. 34(6):2258–2273

    Article  CAS  Google Scholar 

  52. Tiraferri A, Maroni P, Caro Rodríguez D, Borkovec M (2014) Mechanism of chitosan adsorption on silica from aqueous solutions. Langmuir. 30(17):4980–4988

    Article  CAS  Google Scholar 

  53. Lone S, Yoon DH, Lee H, Cheong IW (2019) Gelatin-chitosan hydrogel particles for efficient removal of Hg(ii) from wastewater. Environ Sci Water Res Technol 5(1):83–90

    Article  CAS  Google Scholar 

  54. Karve M, Choudhary B (2014) Determination of cadmium in water and herbal medicine by Penicillium chrysogenum immobilized on silica gel for flame atomic absorption spectroscopy. Toxicol Environ Chem 96(8):1131–1140

    CAS  Google Scholar 

Download references

Acknowledgments

Authors convey thanks to Director of Ratnagiri Sub-Centre University of Mumbai (M.S.) India for providing cyclic voltammetry instrument facility and Head of Department of Chemistry K.C. College Mumbai India for providing chemicals, and Shivaji University Kolhapur (M.S.) India for ICP- AES facility. We would like to thanks to Birla College Mumbai (M.S.) India for providing BET facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay L. Gurav.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurav, V.L., Samant, R.A. Chitosan from Waste Marine Sources Immobilized Silica: Differential Pulse Voltammetric Determination of Heavy Metal Ions from Industrial Effluent. Water Conserv Sci Eng 5, 15–21 (2020). https://doi.org/10.1007/s41101-019-00080-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-019-00080-7

Keywords

Navigation