Skip to main content

A Review of Transmuted Distributions

Abstract

A comprehensive review of transmuted distributions is provided. Nearly thirty such distributions are reviewed. Real data applications are provided comparing the reviewed distributions to other classes of distributions. This review could serve as an important reference and encourage developments of further transmuted distributions that could model complicated phenomena more accurately.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  • Aarset MV (1987) How to identify bathtub hazard rate. IEEE Trans Reliab 36:106–108

    MATH  Google Scholar 

  • Abdul-Moniem IB, Seham M (2015) Transmuted Gompertz distribution. Comput Appl Math 1:88–96

    Google Scholar 

  • Abouammoh A, Abdulghani S, Qamber I (1994) On partial orderings and testing of new better than renewal used classes. Reliab Eng Syst Saf 43:37–41

    Google Scholar 

  • Adamidis K, Loukas S (1998) A lifetime distribution with decreasing failure rate. Stat Probab Lett 39:35–42

    MathSciNet  MATH  Google Scholar 

  • Afify AZ, Nofal ZM, Yousof HM, Butt NS (2015) The transmuted Weibull Lomax distribution: properties and application. Pak J Stat Oper Res XI:135–152

    MathSciNet  Google Scholar 

  • Ahmad A, Ahmad SP, Ahmed A (2014) Transmuted inverse Rayleigh distribution: a generalization of the inverse Rayleigh distribution. Math Theory Model 4:177–185

    Google Scholar 

  • Ahmad A, Ahmad SP, Ahmed A (2015) Characterization and estimation of transmuted Kumaraswamy distribution. Math Theory Model 5:168–174

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    MathSciNet  MATH  Google Scholar 

  • Alexander C, Cordeiro GM, Ortega EMM, Sarabia JM (2012) Generalized beta generated distributions. Comput Stat Data Anal 56:1880–1897

    MathSciNet  MATH  Google Scholar 

  • Almalki SJ, Nadarajah S (2014) Modifications of the Weibull distribution: a review. Reliab Eng Syst Saf 124:32–55

    Google Scholar 

  • Anis MZ (2008) Basic process capability indices: an expository review. Int Stat Rev 76:347–367

    Google Scholar 

  • Aryal GR (2013) Transmuted log-logistic distribution. J Stat Appl Probab 2:11–20

    Google Scholar 

  • Aryal GR, Tsokos CP (2009) On the transmuted extreme value distribution with application. Nonlinear Anal: Theory Methods Appl 71:1401–1407

    MathSciNet  MATH  Google Scholar 

  • Aryal GR, Tsokos CP (2011) Transmuted Weibull distribution: a generalization of the Weibull probability distribution. Eur J Pure Appl Math 4:89–102

    MathSciNet  MATH  Google Scholar 

  • Ashour SK, Eltehiwy MA (2013) Transmuted exponentiated Lomax distribution. Aust J Basic Appl Sci 7:658–667

    Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Badar MG, Priest AM (1982) Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, Kawata K, Umekawa S (eds) Progress in science and engineering composites. ICCM-IV, Tokyo, pp 1129–1136

  • Barakat HM (2015) A new method for adding two parameters to a family of distributions with application to the normal and exponential families. Stat Methods Appl 24:359–372

    MathSciNet  MATH  Google Scholar 

  • Barlow RE, Toland RH, Freeman T (1984) A Bayesian analysis of stress rupture life of kevlar 49/epoxy sphere-cal pressure vessels. In: Proceedings of the conference on applications of statistics. Marcel Dekker, New York

  • Barreto-Souza W, Santos AH, Cordeiro GM (2010) The beta generalized exponential distribution. J Stat Comput Simul 80:159–172

    MathSciNet  MATH  Google Scholar 

  • Bjerkedal T (1960) Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. Am J Hygiene 72:130–148

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    MathSciNet  Google Scholar 

  • Cooray K (2010) Generalized Gumbel distribution. J Appl Stat 37:171–179

    MathSciNet  MATH  Google Scholar 

  • Cordeiro GM, Nadarajah S, Ortega EM (2012) The Kumaraswamy Gumbel distribution. Stat Methods Appl 21:139–168

    MathSciNet  Google Scholar 

  • Cordeiro GM, Ortega EMM, Daniel CC (2013) The exponentiated generalized class of distributions. J Data Sci 11:1–27

    MathSciNet  Google Scholar 

  • Cordeiro GM, Ortega EMM, Popović BV (2014) The gamma linear failure rate distribution: theory and applications. J Stat Comput Simul 84:2408–2426

    MathSciNet  MATH  Google Scholar 

  • Dey S, Kumar D, Park C (2016) Transmuted gamma-mixed Rayleigh distribution: properties and estimation with bladder cancer data example. Model Assist Stat Appl 1:1–21

    Google Scholar 

  • Dey S, Raheem E, Mukherjee S (2017) Statistical properties and different methods of estimation of transmuted Rayleigh distribution. Revista Colombiana de Estadistica 40:1–39

    MathSciNet  MATH  Google Scholar 

  • Elbatal I (2013a) Transmuted generalized inverted exponential distribution. Econ Qual Control 28:125–133

    MATH  Google Scholar 

  • Elbatal I (2013b) Transmuted modified inverse Weibull distribution: a generalization of the modified inverse Weibull probability distribution. Int J Math Arch 4:117–129

    Google Scholar 

  • Elbatal I, Aryal G (2013) On the transmuted additive Weibull distribution. Austrian J Stat 42:117–132

    Google Scholar 

  • Elbatal I, Asha G, Raja AV (2014) Transmuted exponentiated Fréchet distribution: properties and applications. J Stat Appl Probab 3:379–394

    Google Scholar 

  • Elbatal I, Diab LS, Abdul Alim NA (2013) Transmuted generalized linear exponential distribution. Int J Comput Appl 83:17–28

    Google Scholar 

  • Elbatal I, Elgarhy M (2013) Transmuted quasi Lindley distribution: a generalization of the quasi Lindley distribution. Int J Pure Appl Sci Technol 18:59–70

    Google Scholar 

  • Eugene N, Lee C, Famoye F (2002) Beta-normal distributions and its applications. Commun Stat-Theory Methods 31:497–512

    MathSciNet  MATH  Google Scholar 

  • Fang Y (2011) Asymptotic equivalence between cross-validations and Akaike Information Criteria in mixed-effects models. J Data Sci 9:15–21

    MathSciNet  Google Scholar 

  • Ferreira JTAS, Steel MFJ (2006) A constructive representation of univariate skewed distributions. J Am Stat Assoc 101:823–829

    MathSciNet  MATH  Google Scholar 

  • Gupta J, Garg M, Gupta M (2016) The Lomax–Gumbel distribution. Palest J Math 5:35–42

    MathSciNet  MATH  Google Scholar 

  • Hinkley D (1977) On quick choice of power transformation. Appl Stat 26:67–69

    Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    MathSciNet  MATH  Google Scholar 

  • Hussian MA (2014) Transmuted exponentiated gamma distribution: a generalization of the exponentiated gamma probability distribution. Appl Math Sci 8:1297–1310

    MathSciNet  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2. Wiley, New York

    MATH  Google Scholar 

  • Jones MC (2004) Families of distributions arising from orders statistics. Test 13:1–43

    MathSciNet  MATH  Google Scholar 

  • Khan MS, King R (2012) Modified inverse Weibull distribution. J Stat Appl Probab 1:115–132

    Google Scholar 

  • Khan MS, King R (2013) Transmuted modified Weibull distribution: a generalization of the modified Weibull probability distribution. Eur J Pure Appl Math 6:66–88

    MathSciNet  MATH  Google Scholar 

  • Khan MS, King R (2015) Transmuted modified inverse Rayleigh distribution. Austrian J Stat 44:17–29

    Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Kozubowski TJ, Podgorski K (2016) Transmuted distributions and random extrema. Stat Probab Lett 116:6–8

    MathSciNet  MATH  Google Scholar 

  • Kundu D, Howlader H (2010) Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. Comput Stat Data Anal 54:1547–1558

    MathSciNet  MATH  Google Scholar 

  • Lai MT (2013) Optimum number of minimal repairs for a system under increasing failure rate shock model with cumulative repair-cost limit. Int J Reliab Saf 7:95–107

    Google Scholar 

  • Lee ET, Wang JW (2003) Statistical methods for survival data analysis. Wiley, New York

    MATH  Google Scholar 

  • Lu Y, Cheng L, Zhang L, Yan D, You C (2001) Optimization of sample number for Weibull functions of brittle materials strength. Ceram Int 27:239–241

    Google Scholar 

  • Mahmoud MR, Mandouh RM (2013) On the transmuted Fréchet distribution. J Appl Sci Res 9:5553–5561

    Google Scholar 

  • Mansour MM, Enayat MA, Hamed SM, Mohamed MS (2015) A new transmuted additive Weibull distribution based on a new method for adding a parameter to a family of distributions. Int J Appl Math Sci 8:31–54

    Google Scholar 

  • Mansour MM, Mohamed SM (2015) A new generalized of transmuted Lindley distribution. Appl Math Sci 9:2729–2748

    Google Scholar 

  • Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84:641–652

    MathSciNet  MATH  Google Scholar 

  • Marshall AW, Olkin I (2007) Life distributions. Structure of nonparametric, semiparametric and parametric families. Springer-Verlag, New York

    MATH  Google Scholar 

  • Maya R, Irshad MR (2017) New extended generalized Lindley distribution: properties and applications. Revista de Statistica. https://doi.org/10.6092/issn.1973-2201/6808

    Article  MATH  Google Scholar 

  • Merovci F (2013a) Transmuted Lindley distribution. Int J Open Probl Comput Sci Math 6:63–72

    Google Scholar 

  • Merovci F (2013b) Transmuted exponentiated exponential distribution. Math Sci Appl E-Notes 1:112–122

    Google Scholar 

  • Merovci F (2013c) Transmuted Rayleigh distribution. Austrian J Stat 42:21–31

    Google Scholar 

  • Merovci F, Elbatal E (2014) Transmuted Lindley-geometric distribution and its applications. J Stat Appl Probab 3:77–91

    MATH  Google Scholar 

  • Merovci F, Puka L (2014) Transmuted Pareto distribution. ProbStat Forum 7:1–11

    MathSciNet  MATH  Google Scholar 

  • Merovci F, Sharma VK (2014) The Kumaraswamy–Lindley distribution: Properties and applications

  • Mohammed BE (2014) Statistical properties of Kumaraswamy-generalized exponentiated exponential distribution. Int J Comput Appl. https://doi.org/10.5120/16328-5602

    Article  Google Scholar 

  • Mudholkar GS, Hutson AD (1996) The exponentiated Weibull family: some properties and a flood data application. Commun Stat-Theory Methods 25:3059–3083

    MathSciNet  MATH  Google Scholar 

  • Murthy DP, Xie M, Jiang R (2004) Weibull models. Wiley, New York

    MATH  Google Scholar 

  • Nadarajah S, Bakouch HS, Tahmasbi R (2011) A generalized Lindley distribution. Sankhyā B 73:331–359

    MathSciNet  MATH  Google Scholar 

  • Nadarajah S, Cordeiro GM, Ortega EM (2013) The exponentiated Weibull distribution: a survey. Stat Pap 54:839–877

    MATH  Google Scholar 

  • Nadarajah S, Kotz S (2003) The exponentiated Fréchet distribution. Interstat Electron J 14:01–07

    Google Scholar 

  • Nadarajah S, Kotz S (2004) The beta Gumbel distribution. Math Probl Eng 2004:323–332

    MathSciNet  MATH  Google Scholar 

  • Nedjar S, Zeghdoudi H (2016) On gamma Lindley distribution: properties and simulations. J Comput Appl Math 298:167–174

    MathSciNet  MATH  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex algorithm for function minimization. Comput J 7:308–313

    MathSciNet  MATH  Google Scholar 

  • Nichols MD, Padgett WJ (2006) A bootstrap control chart for Weibull percentiles. Qual Reliab Eng Int 22:141–151

    Google Scholar 

  • Patil GP (1977) Weighted distributions. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics, vol 6. Wiley, Chichester, pp 4735–4738

    Google Scholar 

  • Patil GP, Rao CR (1978) Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34:179–184

    MathSciNet  MATH  Google Scholar 

  • Pinho LGB, Cordeiro GM, Nobre JS (2015) The Harris extended exponential distribution. Commun Stat-Theory Methods 44:3486–3502

    MathSciNet  MATH  Google Scholar 

  • Quesenberry CP, Kent J (1982) Selecting among probability distributions used in reliability. Technometrics 24:59–65

    MathSciNet  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Saboor A, Elbatal I, Cordeiro GM (2016) The transmuted exponentiated Weibull-geometric distribution: theory and applications. Hacettepe J Math Stat. https://doi.org/10.15672/HJMS.20156410830

    MathSciNet  Article  MATH  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    MathSciNet  MATH  Google Scholar 

  • Shaw WT, Buckley IRC (2009) The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. http://arxiv.org/abs/0901.0434v1

  • Sheynin OB (1979) C. F. Gauss and the theory of errors. Arch Hist Exact Sci 20:21–72

    MathSciNet  MATH  Google Scholar 

  • Smith RL, Naylor JC (1987) A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Appl Stat 36:358–369

    MathSciNet  Google Scholar 

  • Tian Y, Tian M, Zhu Q (2014) Transmuted linear exponential distribution: a new generalization of the linear exponential distribution. Commun Stat-Simul Comput 43:2661–2677

    MathSciNet  MATH  Google Scholar 

  • Vold A (1998) A generalization of ordinary yield response functions. Ecol Model 108:227–236

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief for careful reading and comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Kumar, D., Anis, M.Z. et al. A Review of Transmuted Distributions. J Indian Soc Probab Stat 22, 47–111 (2021). https://doi.org/10.1007/s41096-021-00096-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-021-00096-0

Keywords

  • Estimation
  • Moment generating function
  • Moments