Skip to main content
Log in

Binominal Mixture Lindley Distribution: Properties and Applications

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a generalized mixture distribution, so-called the binomial mixture Lindley distribution (BMLD). The density function of this distribution is obtained by mixing binomial probabilities with gamma distribution. BMLD have various distributions as its special cases and posses various shapes for its hazard rate function including increasing, decreasing, bathtub shape and upside down bathtub shape depending on its parameters. Several mathematical, structural and statistical properties of the new distribution is presented such as moments, moment generating function, hazard rate function, vitality function, mean residual life function, inequality measures, entropy and extropy etc. The parameters of the model are estimated using the method of maximum likelihood and finally real life data sets are considered to illustrate the relevance of the new model by comparing it with some other lifetime models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarset MV (1987) How to identify a bathtub hazard rate. IEEE Trans Reliab 36(1):106–108

    Article  Google Scholar 

  • Abouammoh AM, Alshangiti AM, Ragab IE (2015) A new generalized Lindley distribution. J Stat Comput Simul 85(18):3662–3678

    Article  MathSciNet  Google Scholar 

  • Al-Mutairi DK, Ghitany ME, Kundu D (2013) Inferences on stress-strength reliability from Lindley distributions. Commun Stat Theory Methods 42(8):1443–1463

    Article  MathSciNet  Google Scholar 

  • Bjerkedal T (1960) Acquisition of resistance in guinea pies infected with different doses of virulent tubercle bacilli. Am J Hyg 72:130–148

    Google Scholar 

  • Bhati D, Malik MA, Vaman HJ (2015) Lindley-exponential distribution. Properties and applications. METRON 73(3):335–357

    Article  MathSciNet  Google Scholar 

  • Bonferroni CE (1930) Elementi di statistica generale. Seeber, Firenze

    Google Scholar 

  • Deniz EG, Ojeda EC (2011) The discrete Lindley distribution properties and applications. J Stat Comput Simul 81:1405–1416

    Article  MathSciNet  Google Scholar 

  • Ebrahimi N (1996) How to measure uncertainty in the residual life time distribution. SankhyÄ Indian J Stat Ser 5:48–56

    MathSciNet  MATH  Google Scholar 

  • Elbatal I, Merovci F, Elgarhy M (2013) A new generalized Lindley distribution. Math Theory Model 3(13):30–47

    Google Scholar 

  • Ghitany ME, Alqallaf F, Al-Mutairi DK, Husain HA (2011) A two-parameter weighted Lindley distribution and its applications to survival data. Math Comput Simul 81(6):1190–1201

    Article  MathSciNet  Google Scholar 

  • Ghitany ME, Atieh B, Nadarajah S (2008) Lindley distribution and its applications. Math Comput Simul 78:493–506

    Article  MathSciNet  Google Scholar 

  • Havrda J, Charvát F (1967) Quantification method of classification processes. Concept of structural a-entropy. Kybernetika 3(1):30–35

    MathSciNet  MATH  Google Scholar 

  • Lad F, Sanfilippo G, Agro G (2015) Extropy. Complementary dual of entropy. Stat Sci 30(1):40–58

    Article  MathSciNet  Google Scholar 

  • Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. IEEE Trans Reliab 52(1):33–37

    Article  Google Scholar 

  • Lemonte AJ, Cordeiro GM, Ortega EM (2014) On the additive Weibull distribution. Commun Stat Theory Methods 43(10–12):2066–2080

    Article  MathSciNet  Google Scholar 

  • Lindley DV (1958) Fiducial distributions and Baye’s theorem. J Roy Stat Soc B 20:102–107

    MathSciNet  MATH  Google Scholar 

  • Mazucheli J, Achcar JA (2011) The Lindley distribution applied to competing risks lifetime data. Comput Methods Programs Biomed 104(2):188–192

    Article  Google Scholar 

  • Nadarajah S, Bakouch HS, Tahmasbi R (2011) A generalized Lindley distribution. Sankhya B 73(2):331–359

    Article  MathSciNet  Google Scholar 

  • Pal M, Ali MM, Woo J (2006) Exponentiated weibull distribution. Statistica 66(2):139–147

    MathSciNet  MATH  Google Scholar 

  • Qiu G, Jia K (2018) The residual extropy of order statistics. Stat Probabil Lett 133:15–22

    Article  MathSciNet  Google Scholar 

  • Ranjbar V, Alizadeh M, Altun E (2019) Extended Generalized Lindley distribution: properties and applications. J Math Ext 13:117–142

    Google Scholar 

  • Rényi A (1961) On measures of entropy and information. Proc Fourth Berkeley Symp Math Stat Probabil 1:547–561

    MathSciNet  MATH  Google Scholar 

  • Shanker R, Sharma S, Shanker R (2013) A two-parameter Lindley distribution for modeling waiting and survival times data. Appl Math 4(2):363–368

    Article  Google Scholar 

  • Sharma VK, Singh SK, Singh U, Agiwal V (2015) The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. J Ind Prod Eng 32(3):162–173

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  MathSciNet  Google Scholar 

  • Smith RL, Naylor JC (1987) A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. J R Stat Soc Ser C 36(3):358–369

    MathSciNet  Google Scholar 

  • Titterington DM, Smith AFM, Markov UE (1985) Statistical analysis of finite mixture distributions. Wiley, New York

    Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52(1–2):479–487

    Article  MathSciNet  Google Scholar 

  • Zakerzadeh H, Dolati A (2009) Generalized Lindley distribution. J Math Exten 3:13–25

    MathSciNet  MATH  Google Scholar 

  • Zenga M (2007) Inequality curve and inequality index based on the ratios between lower and upper arithmetic means. Statistica Applicazioni 4:3–27

    Google Scholar 

Download references

Acknowledgements

The authors express their gratefulness to the learned referee for many of the constructive comments and suggestions, which lead the way to improvements and thus procure current version of the paper. First author acknowledge the Cochin University of Science and Technology for providing financial support in the form of seed money for new research initiatives (No.PL.(UGC)I/SPG/SMNRI/2018-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Irshad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The second partial and cross derivatives with respect to the parameters are derived as,

$$\begin{aligned} \begin{aligned}&\frac{\partial ^{2} \log l}{\partial \theta ^{2}}= \frac{2n}{(\theta +\beta )^{2}}+\frac{1}{\theta ^2}\sum \limits _{i=1}^{n}\frac{1}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (A_{i}+B_{i}+C_{i} \Big )\Big (\alpha _0(\alpha _0-1)A_{i}\\&\quad +(\alpha _1+1)\alpha _1 B_{i}+(\alpha _2+2)(\alpha _2+1)C_i\Big )\\&\quad - \Big (\alpha _0A_{i}+(\alpha _1+1)B_{i}+(\alpha _2+2)C_{i}\Big )^2 \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \theta \partial \beta }= \frac{2n}{(\theta +\beta )^{2}}+\frac{1}{\theta \beta }\sum \limits _{i=1}^{n}\frac{1}{(A_{i}+B_{i}+C_{i})^2}\bigg \{(\alpha _{0}-\alpha _{1}-1) A_{i}B_{i}\\&\quad +2(\alpha _{0}-\alpha _{2}-2)A_{i}C_{i}+(\alpha _{1}-\alpha _{2}-1)B_{i}C_{i} \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \theta \partial \alpha _{0}}= \frac{1}{\theta }\sum \limits _{i=1}^{n}\frac{A_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (A_{i}+B_{i} +C_{i}\Big )\bigg (1+\alpha _0\Big (\log (\theta x_{i})-\psi (\alpha _{0})\Big )\bigg )\\&\quad - \Big (\alpha _0A_{i}+(\alpha _1+1)B_{i}+(\alpha _2+2)C_{i}\Big ) \Big (\log (\theta x_{i})-\psi (\alpha _{0})\Big ) \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \theta \partial \alpha _{1}}= \frac{1}{\theta }\sum \limits _{i=1}^{n}\frac{B_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (A_{i}+B_{i} +C_{i}\Big )\bigg (1+(\alpha _1+1)\Big (\log (\theta x_{i})-\psi (\alpha _{1})\Big )\bigg )\\&\quad - \Big (\alpha _0A_{i}+(\alpha _1+1)B_{i}+(\alpha _2+2)C_{i}\Big )\Big (\log (\theta x_{i})-\psi (\alpha _{1})\Big ) \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \theta \partial \alpha _{2}}= \frac{1}{\theta }\sum \limits _{i=1}^{n}\frac{C_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (A_{i}+B_{i} +C_{i}\Big )\bigg (1+(\alpha _2+2)\Big (\log (\theta x_{i})-\psi (\alpha _{2})\Big )\bigg )\\&\quad - \Big (\alpha _0 A_{i}+(\alpha _1+1)B_{i}+(\alpha _2+2)C_{i}\Big )\Big (\log (\theta x_{i}) -\psi (\alpha _{2})\Big ) \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \beta ^{2}}= \frac{2n}{(\theta +\beta )^{2}}+\frac{1}{\beta ^{2}}\sum \limits _{i=1}^{n}\frac{1}{(A_{i}+B_{i}+C_{i})^2}\bigg \{2A_i(A_i+B_i+C_i)-(2A_i+B_i)^2 \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \beta \partial \alpha _{0}}= \frac{1}{\beta }\sum \limits _{i=1}^{n}\frac{A_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (\log (\theta x_{i})-\psi (\alpha _{0})\Big )\Big (B_i+2C_i\Big )\bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \beta \partial \alpha _{1}}= \frac{1}{\beta }\sum \limits _{i=1}^{n}\frac{B_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (\log (\theta x_{i})-\psi (\alpha _{1})\Big )\Big (C_i-A_i\Big )\bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \beta \partial \alpha _{2}}= \frac{1}{\beta }\sum \limits _{i=1}^{n}\frac{C_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{-\Big (\log (\theta x_{i})-\psi (\alpha _{2})\Big )\Big (2A_i+B_i\Big )\bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \alpha _{0}^{2}}= \sum \limits _{i=1}^{n}\frac{A_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (A_{i}+B_{i} +C_{i}\Big )\bigg (\Big (\log (\theta x_{i})-\psi (\alpha _{0})\Big )^{2}-\psi ^{'}(\alpha _{0})\bigg )\\&\quad - A_{i}\Big (\log (\theta x_{i})-\psi (\alpha _{0})\Big )^2 \bigg \}, \frac{\partial ^{2} \log l}{\partial \alpha _{0}\partial \alpha _{1}}\\&\quad = \sum \limits _{i=1}^{n}\frac{1}{(A_{i}+B_{i}+C_{i})^2}\bigg \{- A_{i}B_{i}\Big (\log (\theta x_{i})-\psi (\alpha _{0})\Big )\Big (\log (\theta x_{i})-\psi (\alpha _{1})\Big ) \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \alpha _{0}\partial \alpha _{2}}= \sum \limits _{i=1}^{n}\frac{1}{(A_{i}+B_{i}+C_{i})^2}\bigg \{- A_{i}C_{i}\Big (\log (\theta x_{i})-\psi (\alpha _{0})\Big )\Big (\log (\theta x_{i})-\psi (\alpha _{2})\Big ) \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \alpha _{1}^{2}}= \sum \limits _{i=1}^{n}\frac{B_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (A_{i}+B_{i} +C_{i}\Big )\bigg (\Big (\log (\theta x_{i})-\psi (\alpha _{1})\Big )^{2}-\psi ^{'}(\alpha _{1})\bigg )\\&\quad - B_{i}\Big (\log (\theta x_{i})-\psi (\alpha _{1})\Big )^2 \bigg \},\\&\quad \frac{\partial ^{2} \log l}{\partial \alpha _{1}\partial \alpha _{2}}= \sum \limits _{i=1}^{n}\frac{1}{(A_{i}+B_{i}+C_{i})^2}\bigg \{- B_{i}C_{i}\Big (\log (\theta x_{i})-\psi (\alpha _{1})\Big )\Big (\log (\theta x_{i})-\psi (\alpha _{2})\Big ) \bigg \} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \frac{\partial ^{2} \log l}{\partial \alpha _{2}^{2}}=&\sum \limits _{i=1}^{n}\frac{C_i}{(A_{i}+B_{i}+C_{i})^2}\bigg \{\Big (A_{i}+B_{i} +C_{i}\Big )\bigg (\Big (\log (\theta x_{i})-\psi (\alpha _{2})\Big )^{2}-\psi ^{'}(\alpha _{2})\bigg )\\&- C_{i}\Big (\log (\theta x_{i})-\psi (\alpha _{2})\Big )^2 \bigg \}. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshad, M.R., Shibu, D.S., Maya, R. et al. Binominal Mixture Lindley Distribution: Properties and Applications. J Indian Soc Probab Stat 21, 437–469 (2020). https://doi.org/10.1007/s41096-020-00090-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-020-00090-y

Keywords

Navigation