Skip to main content

Image-based appearance acquisition of effect coatings

Abstract

Paint manufacturers strive to introduce unique visual effects to coatings in order to visually communicate functional properties of products using value-added, customized design. However, these effects often feature complex, angularly dependent, spatially-varying behavior, thus representing a challenge in digital reproduction. In this paper we analyze several approaches to capturing spatially-varying appearances of effect coatings. We compare a baseline approach based on a bidirectional texture function (BTF) with four variants of half-difference parameterization. Through a psychophysical study, we determine minimal sampling along individual dimensions of this parameterization. We conclude that, compared to BTF, bivariate representations better preserve visual fidelity of effect coatings, better characterizing near-specular behavior and significantly the restricting number of images which must be captured.

References

  1. Nicodemus, F. E.; Richmond, J. C.; Hsia, J. J.; Ginsberg, I. W.; Limperis, T. Geometrical considerations and nomenclature for reflectance. In: Radiometry. Jones and Bartlett Publishers, Inc., 94–145, 1992.

    Google Scholar 

  2. Dana, K. J.; van Ginneken, B.; Nayar, S. K.; Koenderink, J. J. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics Vol. 18, No. 1, 1–34, 1999.

    Article  Google Scholar 

  3. Rusinkiewicz, S. M. A new change of variables for efficient BRDF representation. In: Rendering Techniques’ 98. Drettakis, G.; Max, N. Eds. Springer Vienna, 11–22, 1998.

    Google Scholar 

  4. Romeiro, F.; Vasilyev, Y.; Zickler, T. Passive reflectometry. In: Computer Vision — ECCV 2008. Lecture Notes in Computer Science, Vol. 5305. Forsyth, D.; Torr, P.; Zisserman, A. Eds. Springer Berlin Heidelberg, 859–872, 2008.

    Chapter  Google Scholar 

  5. McAuley, S.; Hill, S.; Hoffman, N.; Gotanda, Y.; Smits, B.; Burley, B.; Martinez, A. Practical physically-based shading in film and game production. In: Proceedings of the ACM SIGGRAPH 2012 Courses, Article No. 10, 2012.

    Book  Google Scholar 

  6. Burley, B. BRDF related resources. 2018. Available at https://doi.org/wiki.nuaj.net/index.php?title=BRDF.

    Google Scholar 

  7. Filip, J.; Vávra, R.; Maile, F. J. BRDF measurement of highly-specular materials using a goniometer. In: Proceedings of the 33rd Spring Conference on Computer Graphics, Article No. 13, 2017.

    Book  Google Scholar 

  8. Ward, G.; Kurt, M.; Bonneel, N. Reducing anisotropic BSDF measurement to common practice. In: Proceedings of the Eurographics 2014 Workshop on Material Appearance Modeling: Issues and Acquisition, 5–8, 2014.

    Google Scholar 

  9. Ferrero, A.; Rabal, A.; Campos, J.; Martínez-Verdú, F.; Chorro, E.; Perales, E.; Pons, A.; Hernanz, M. L Spectral BRDF-based determination of proper measurement geometries to characterize color shift of special effect coatings. Journal of the Optical Society of America A Vol. 30, No. 2, 206–214, 2013.

    Article  Google Scholar 

  10. Strothkämper, C.; Hauer, K.-O.; Höpe, A. How to efficiently characterize special effect coatings. Journal of the Optical Society of America A Vol. 33, No. 1, 1–8, 2016

    Article  Google Scholar 

  11. Vávra, R.; Filip, J. Minimal sampling for effective acquisition of anisotropic BRDFs. Computer Graphics Forum Vol. 35, No. 7, 299–309, 2016.

    Article  Google Scholar 

  12. Vávra, R.; Filip, J. Adaptive slices for acquisition of anisotropic BRDF. Computational Visual Media Vol. 4, No. 1, 55–69, 2018.

    Article  Google Scholar 

  13. Dong, Y.; Wang, J. P.; Tong, X.; Snyder, J.; Lan, Y. X.; Ben-Ezra, M.; Guo, B. N. Manifold bootstrapping for SVBRDF capture. ACM Transactions on Graphics Vol. 29, No. 4, Article No. 98, 2010.

    Google Scholar 

  14. Aittala, M.; Weyrich, T.; Lehtinen, J. Practical SVBRDF capture in the frequency domain. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 110, 2013.

    Google Scholar 

  15. Aittala, M.; Timo, A. L.; Lehtinen, J. Reflectance modeling by neural texture synthesis. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 65, 2016.

    Google Scholar 

  16. Jakob, W.; Hašan, M.; Yan, L. Q.; Lawrence, J.; Ramamoorthi, R.; Marschner, S. Discrete stochastic microfacet models. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 115, 2014.

    Google Scholar 

  17. Den Brok, D.; Weinmann, M.; Klein, R. Rapid material capture through sparse and multiplexed measurements. Computers and Graphics Vol. 73, 26–36, 2018.

    Article  Google Scholar 

  18. Velinov, Z.; Hullin, M. B. An interactive appearance model for microscopic fiber surfaces. In: Proceedings of the Conference on Vision, Modeling and Visualization, 145–152, 2016.

    Google Scholar 

  19. Günther, J.; Chen, T.; Goesele, M.; Wald, I.; Seidel, H.-P. Efficient acquisition and realistic rendering of car paint. In: Vision, Modeling, and Visualization. Greiner, G.; Hornegger, J.; Niemann, H.; Stamminger, M. Eds. Akademische Verlagsgesellschaft Aka, 487–494, 2005.

    Google Scholar 

  20. Ershov, S.; Kolchin, K.; Myszkowski, K. Rendering pearlescent appearance based on paint-composition modelling. Computer Graphics Forum Vol. 20, No. 3, 227–238, 2001.

    Article  Google Scholar 

  21. Ďrikovič, R.; Martens, W. L. Simulation of sparkling and depth effect in paints. In: Proceedings of the 19th Spring Conference on Computer Graphics, 193–198, 2003.

    Google Scholar 

  22. Ergun, S.; Önel, S.; Ozturk, A. A general micro-flake model for predicting the appearance of car paint. In: Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, 65–71, 2016.

    Google Scholar 

  23. Mihálik, A.; Ďrikovič, R. Metallic paint appearance measurement and rendering. Journal of the Applied Mathematics, Statistics and Informatics Vol. 9, No. 2, 25–39, 2013.

    Article  Google Scholar 

  24. Rump, M.; Müller, G.; Sarlette, R.; Koch, D.; Klein, R. Photo-realistic rendering of metallic car paint from image-based measurements. Computer Graphics Forum Vol. 27, No. 2, 527–536, 2008.

    Article  Google Scholar 

  25. Rump, M.; Sarlette, R.; Klein, R. Efficient resampling, compression and rendering of metallic and pearlescent paint. In: Proceedings of the Vision, Modeling, and Visualization, 11–18, 2009.

    Google Scholar 

  26. Golla, T.; Klein, R. An efficient statistical data representation for real-time rendering of metallic effect car paints In: Virtual Reality and Augmented Reality. Lecture Notes in Computer Science, Vol. 10700. Barbic, J.; D’Cruz, M.; Latoschik, M.; Slater, M.; Bourdot, P. Eds. Springer Cham, 51–68, 2017.

    Chapter  Google Scholar 

  27. Golla, T.; Klein, R. Interactive interpolation of metallic effect car paints. In: Proceedings of Vision, Modeling and Visualization, 2018.

    Google Scholar 

  28. Kautz, J.; Boulos, S.; Durandk, F. Interactive editing and modeling of bidirectional texture functions. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 53, 2007.

    Google Scholar 

  29. Xu, K.; Wang, J. P.; Tong, X.; Hu, S.-M.; Guo, B. N. Edit propagation on bidirectional texture functions. Computer Graphics Forum Vol. 28, No. 7, 1871–1877, 2009.

    Article  Google Scholar 

  30. Yan, L.-Q.; Hašan, M.; Jakob, W.; Lawrence, J.; Marschner, S.; Ramamoorthi, R. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 116, 2014.

    Google Scholar 

  31. Xu, K.; Sun, W.-L.; Dong, Z.; Zhao, D.-Y.; Wu, R.-D.; Hu, S.-M. Anisotropic spherical Gaussians. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 209, 2013.

    Google Scholar 

  32. Matusik, W.; Pfister, H.; Brand, M.; McMillan, L. A data-driven reflectance model. ACM Transactions on Graphics Vol. 22, No. 3, 759–769, 2003.

    Article  Google Scholar 

  33. Pellacini, F.; Ferwerda, J. A.; Greenberg, D. P. Toward a psychophysically-based light reflection model for image synthesis. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 55–64, 2000.

    Google Scholar 

  34. Serrano, A.; Gutierrez, D.; Myszkowski, K.; Seidel, H.-P.; Masia, B. An intuitive control space for material appearance. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 186, 2016.

    Google Scholar 

  35. Filip, J.; Chantler, M. J.; Green, P. R.; Haindl, M. A psychophysically validated metric for bidirectional texture data reduction. ACM Transactions on Graphics Vol. 27, No. 5, Article No. 138, 2008.

    Google Scholar 

  36. Jarabo, A.; Wu, H. Z.; Dorsey, J.; Rushmeier, H.; Gutierrez, D. Effects of approximate filtering on the appearance of bidirectional texture functions. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 6, 880–892, 2014.

    Article  Google Scholar 

  37. Ward, G. J. Measuring and modeling anisotropic reflection. ACM SIGGRAPH Computer Graphics Vol. 26, No. 2, 265–272, 1992.

    MathSciNet  Article  Google Scholar 

  38. Cook, R. L.; Torrance, K. E. A reflectance model for computer graphics. ACM Transactions on Graphics Vol. 1, No. 1, 7–24, 1982.

    Article  Google Scholar 

  39. Marschner, S. R. Inverse rendering for computer graphics. Ph.D. Thesis. Cornell University, 1998.

    Google Scholar 

  40. Aydin, T. O.; Mantiuk, R.; Seidel, H.-P. Extending quality metrics to full luminance range images. In: Proceedings of the SPIE 6806, Human Vision and Electronic Imaging XIII, 68060B, 2008.

    Google Scholar 

  41. Maile, F. J.; Pfaff, G.; Reynders, P. Effect pigments: Past, present and future. Progress in Organic Coatings Vol. 54, No. 3, 150–163, 2005.

    Article  Google Scholar 

  42. Filip, J.; Vávra, R.; Haindl, M.; Zid, P.; Krupicka, M.; Havran, V. BRDF slices: Accurate adaptive anisotropic appearance acquisition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1468–1473, 2013.

    Google Scholar 

  43. Somol, P.; Haindl, M. Novel path search algorithm for image stitching and advanced texture tiling. In: Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 155–162, 2005.

    Google Scholar 

  44. Sattler, M.; Sarlette, R.; Klein, R. Efficient and realistic visualization of cloth. In: Proceedings of the 14th Eurographics Workshop on Rendering, 167–178, 2003.

    Google Scholar 

  45. Palmer, C. A.; Loewen, E. G. Diffraction Grating Handbook, 6th edn. New York: Newport Corporation, 2005.

    Google Scholar 

  46. Cochran, W. G. The comparison of percentages in matched samples. Biometrika Vol. 37, No. 3/4, 256–266, 1950.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Frank J. Maile from Schlenk Metallic Pigments GmbH for sample preparation and inspiring discussions, our colleague Martina Kolafová for organization and running of psychophysical experiments, and all anonymous subjects for the time they devoted to participation in visual experiments. This research was supported by Czech Science Foundation grant 17-18407S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Filip.

Additional information

Jiří Filip received his M.Sc. and Ph.D. degrees both in cybernetics, from the Czech Technical University in Prague. Since 2002 he has been a researcher at the Institute of Information Theory and Automation (UTIA) of the Czech Academy of Sciences. Between 2007 and 2009 he was a Marie-Curie research fellow at Heriot–Watt University, Edinburgh. He combines methods of image processing, computer graphics, and visual psychophysics. His current research is focused on precise measurement and modeling of material appearance.

Radomír Vávra received his M.Sc. and Ph.D. degrees from the Czech Technical University in Prague. He is currently a researcher at the Institute of Information Theory and Automation (UTIA) of the Czech Academy of Sciences. His research interests include accurate material appearance measurement techniques and material visualization methods in computer graphics.

Electronic supplementary material

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://doi.org/creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from https://doi.org/www.springer.com/journal/41095. To submit a manuscript, please go to https://doi.org/www.editorialmanager.com/cvmj.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filip, J., Vávra, R. Image-based appearance acquisition of effect coatings. Comp. Visual Media 5, 73–89 (2019). https://doi.org/10.1007/s41095-019-0134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41095-019-0134-3

Keywords

  • effect coatings
  • measurement
  • bidirectional texture function (BTF)
  • appearance
  • psychophysical experiment