Kopf, J. 360 video stabilization. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 195, 2016.
Google Scholar
Matzen, K.; Cohen, M. F.; Evans, B.; Kopf, J.; Szeliski, R. Low-cost 360 stereo photography and video capture. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 148, 2017.
Google Scholar
Brown, M.; Lowe, D. G. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision Vol. 74, No. 1, 59–73, 2007.
Article
Google Scholar
Pintore, G.; Garro, V.; Ganovelli, F.; Gobbetti, E.; Agus, M. Omnidirectional image capture on mobile devices for fast automatic generation of 2.5D indoor maps. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 1–9, 2016.
Google Scholar
Pintore, G.; Gobbetti, E. Effective mobile mapping of multi-room indoor structures. The Visual Computer Vol. 30, Nos. 6–8, 707–716, 2014.
Article
Google Scholar
Pintore, G.; Ganovelli, F.; Gobbetti, E.; Scopigno, R. Mobile mapping and visualization of indoor structures to simplify scene understanding and location awareness. In: Computer Vision—ECCV 2016 Workshops. Lecture Notes in Computer Science, Vol. 9914. Hua, G.; Jégou, H. Eds. Springer Cham, 130–145, 2016.
Google Scholar
Yang, H.; Zhang, H. Efficient 3D room shape recovery from a single panorama. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5422–5430, 2016.
Google Scholar
Cabral, R.; Furukawa, Y. Piecewise planar and compact floorplan reconstruction from images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 628–635, 2014.
Google Scholar
Pintore, G.; Ganovelli, F.; Pintus, R.; Scopigno, R.; Gobbetti, E. Recovering 3D indoor floor plans by exploiting low-cost spherical photography. In: Proceedings of the Pacific Graphics, 2018. Available at http://publications.crs4.it/pubdocs/2018/PGPSG18/pg2018s-indoorplan.pdf.
Google Scholar
Xiong, X.; Adan, A.; Akinci, B.; Huber, D. Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction Vol. 31, 325–337, 2013.
Article
Google Scholar
Mura, C.; Mattausch, O.; Villanueva, A. J.; Gobbetti, E.; Pajarola, R. Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts. Computers & Graphics Vol. 44, 20–32, 2014.
Article
Google Scholar
Mura, C.; Mattausch, O.; Pajarola, R. Piecewise-planar reconstruction of multi-room interiors with arbitrary wall arrangements. Computer Graphics Forum Vol. 35, No. 7, 179–188, 2016.
Article
Google Scholar
Guo, R.; Hoiem, D. Support surface prediction in indoor scenes. In: Proceedings of the IEEE International Conference on Computer Vision, 2144–2151, 2013.
Google Scholar
Jia, Z.; Gallagher, A.; Saxena, A.; Chen, T. 3Dbased reasoning with blocks, support, and stability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–8, 2013.
Google Scholar
Google. Tango. 2014. Available at www.google.com/atap/projecttango/.
Ikehata, S.; Yang, H.; Furukawa, Y. Structured indoor modeling. In: Proceedings of the IEEE International Conference on Computer Vision, 1323–1331, 2015.
Google Scholar
Kim, Y. M.; Mitra, N. J.; Yan, D.-M.; Guibas, L. Acquiring 3D indoor environments with variability and repetition. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 138, 2012.
Google Scholar
Nan, L.; Xie, K.; Sharf, A. A search-classify approach for cluttered indoor scene understanding. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 137, 2012.
Google Scholar
Autodesk. 123D Catch. Available at www.123dapp.com/catch.
Microsoft. Photosynth. Available at photosynth.net/.
Seitz, S. M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 519–528, 2006.
Google Scholar
Furukawa, Y.; Curless, B.; Seitz, S. M.; Szeliski, R. Reconstructing building interiors from images. In: Proceedings of the IEEE 12th International Conference on Computer Vision, 80–87, 2009.
Google Scholar
Flint, A.; Murray, D.; Reid, I. Manhattan scene understanding using monocular, stereo, and 3D features. In: Proceedings of the International Conference on Computer Vision, 2228–2235, 2011.
Google Scholar
Tsai, G.; Xu, C.; Liu, J.; Kuipers, B. Real-time indoor scene understanding using Bayesian filtering with motion cues. In: Proceedings of the International Conference on Computer Vision, 121–128, 2011.
Google Scholar
Coughlan, J. M.; Yuille, A. L. Manhattan world: Compass direction from a single image by Bayesian inference. In: Proceedings of the 7th IEEE International Conference on Computer Vision, Vol. 2, 941–947, 1999.
Google Scholar
Bao, S. Y.; Furlan, A.; Fei-Fei, L.; Savarese, S. Understanding the 3D layout of a cluttered room from multiple images. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 690–697, 2014.
Chapter
Google Scholar
H¨ane, C.; Heng, L.; Lee, G. H.; Sizov, A.; Pollefeys, M. Real-time direct dense matching on fisheye images using plane-sweeping stereo. In: Proceedings of the 2nd International Conference on 3D Vision, 57–64, 2014.
Google Scholar
Chang, P.; Hebert, M. Omni-directional structure from motion. In: Proceedings of the IEEE Workshop on Omnidirectional Vision, 127–133, 2000.
Chapter
Google Scholar
Sch¨onbein, M.; Geiger, A. Omnidirectional 3D reconstruction in augmented Manhattan worlds. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 716–723, 2014.
Google Scholar
Micusik, B.; Pajdla, T. Structure from motion with wide circular field of view cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 28, No. 7, 1135–1149, 2006.
Article
Google Scholar
Micusik, B.; Pajdla, T. Autocalibration & 3D reconstruction with non-central catadioptric cameras. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, I-58–I-65, 2004.
Google Scholar
Bunschoten, R.; Krose, B. Robust scene reconstruction from an omnidirectional vision system. IEEE Transactions on Robotics and Automation Vol. 19, No. 2, 351–357, 2003.
Article
Google Scholar
Zingg, S.; Scaramuzza, D.; Weiss, S.; Siegwart, R. MAV navigation through indoor corridors using optical flow. In: Proceedings of the IEEE International Conference on Robotics and Automation, 3361–3368, 2010.
Google Scholar
Li, S. Binocular spherical stereo. IEEE Transactions on Intelligent Transportation Systems Vol. 9, No. 4, 589–600, 2008.
MathSciNet
Article
Google Scholar
Geyer, C.; Daniilidis, K. A unifying theory for central panoramic systems and practical implications. In: Computer Vision—ECCV 2000. Lecture Notes in Computer Science, Vol. 1843. Vernon, D. Ed. Springer Berlin Heidelberg, 445–461, 2000.
Google Scholar
Kim, H.; Hilton, A. 3D scene reconstruction from multiple spherical stereo pairs. International Journal of Computer Vision Vol. 104, No. 1, 94–116, 2013.
MathSciNet
MATH
Article
Google Scholar
Im, S.; Ha, H.; Rameau, F.; Jeon, H.-G.; Choe, G.; Kweon, I. S. All-around depth from small motion with a spherical panoramic camera. In: Computer Vision— ECCV 2016. Lecture Notes in Computer Science, Vol. 9907. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 156–172, 2016.
Chapter
Google Scholar
Caruso, D.; Engel, J.; Cremers, D. Large-scale direct SLAM for omnidirectional cameras. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 141–148, 2015.
Google Scholar
Pintore, G.; Pintus, R.; Ganovelli, F.; Scopigno, R.; Gobbetti, E. Recovering 3D existing-conditions of indoor structures from spherical images. Computers & Graphics Vol. 77, 16–29, 2018.
Article
Google Scholar
Kangni, F.; Laganiere, R. Orientation and pose recovery from spherical panoramas. In: Proceedings of the IEEE 11th International Conference on Computer Vision, 1–8, 2007.
Google Scholar
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; S¨usstrunk, S. SLIC superpixels compared to stateof- the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 34, No. 11, 2274–2282, 2012.
Article
Google Scholar
Marroquim, R.; Kraus, M.; Cavalcanti, P. R. Efficient image reconstruction for point-based and line-based rendering. Computers & Graphics Vol. 32, No. 2, 189–203, 2008.
Article
Google Scholar
Grompone von Gioi, R.; Jakubowicz, J.; Morel, J.- M.; Randall, G. LSD: A line segment detector. Image Processing On Line No. 2, 35–55, 2012.
Article
Google Scholar
Douglas, D. H.; Peucker, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization Vol. 10, No. 2, 112–122, 1973.
Article
Google Scholar
Lee, D. C.; Hebert, M.; Kanade, T. Geometric reasoning for single image structure recovery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2136–2143, 2009.
Google Scholar
Zhang, Y.; Song, S.; Tan, P.; Xiao, J. PanoContext: A whole-room 3D context model for panoramic scene understanding. In: Computer Vision–ECCV 2014. Lecture Notes in Computer Science, Vol. 8694. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer Cham, 668–686, 2014.
Google Scholar
Schindler, G.; Dellaert, F. Atlanta world: An expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, I-203–I-209, 2004.
Google Scholar
Schwing, A. G.; Urtasun, R. Efficient exact inference for 3D indoor scene understanding. In: Computer Vision–ECCV 2012. Lecture Notes in Computer Science, Vol. 7577. Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds. Springer Berlin Heidelberg, 299–313, 2012.
Google Scholar