Computational Visual Media

, Volume 4, Issue 2, pp 123–137 | Cite as

Knowledge graph construction with structure and parameter learning for indoor scene design

  • Yuan Liang
  • Fei Xu
  • Song-Hai Zhang
  • Yu-Kun Lai
  • Taijiang MuEmail author
Open Access
Research Article


We consider the problem of learning a representation of both spatial relations and dependencies between objects for indoor scene design. We propose a novel knowledge graph framework based on the entity-relation model for representation of facts in indoor scene design, and further develop a weaklysupervised algorithm for extracting the knowledge graph representation from a small dataset using both structure and parameter learning. The proposed framework is flexible, transferable, and readable. We present a variety of computer-aided indoor scene design applications using this representation, to show the usefulness and robustness of the proposed framework.


knowledge graph scene design structure learning parameter learning 



This work was supported by the National Key R&D Program of China (No. 2017YFB1002604), the National Natural Science Foundation of China (No. 61772298), a Research Grant of Beijing Higher Institution Engineering Research Center, and the Tsinghua–Tencent Joint Laboratory for Internet Innovation Technology.


  1. [1]
    Autodesk REVIT. Available at https://www.autodesk. com/products/revit-family/overview.Google Scholar
  2. [2]
    SketchUp. Available at Scholar
  3. [3]
    ARCHICAD. Available at http://www.graphisoft. com/archicad/.Google Scholar
  4. [4]
    Fisher, M.; Hanrahan, P. Context-based search for 3D models. ACM Transactions on Graphics Vol. 29, No. 6, Article No. 182, 2010.Google Scholar
  5. [5]
    Yeh, Y.-T.; Yang, L.; Watson, M.; Goodman, N. D.; Hanrahan, P. Synthesizing open worlds with constraints using locally annealed reversible jump MCMC. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 56, 2012.Google Scholar
  6. [6]
    Dalton, J.; Dietz, L.; Allan, J. Entity query feature expansion using knowledge base links. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, 365–374, 2014.Google Scholar
  7. [7]
    Li, F.; Dong, X. L.; Langen, A.; Li, Y. Knowledge verification for long-tail verticals. Proceedings of the VLDB Endowment Vol. 10, No. 11, 1370–1381, 2017.CrossRefGoogle Scholar
  8. [8]
    Zhu, X.; Anguelov, D.; Ramanan, D. Capturing long-tail distributions of object subcategories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 915–922, 2014.Google Scholar
  9. [9]
    Savva, M.; Chang, A. X.; Agrawala, M. Scenesuggest: Context-driven 3D scene design. arXiv preprint arXiv:1703.00061, 2017.Google Scholar
  10. [10]
    Yu, L. F.; Yeung, S.-K.; Terzopoulos, D. The clutterpalette: An interactive tool for detailing indoor scenes. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 2, 1138–1148, 2016.CrossRefGoogle Scholar
  11. [11]
    Fisher, M.; Ritchie, D.; Savva, M.; Funkhouser, T.; Hanrahan, P. Example-based synthesis of 3D object arrangements. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 135, 2012.Google Scholar
  12. [12]
    Xu, K.; Chen, K.; Fu, H.; Sun, W.-L.; Hu, S.- M. Sketch2Scene: Sketch-based co-retrieval and coplacement of 3D models. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 123, 2013.Google Scholar
  13. [13]
    Chang, A. X.; Eric, M.; Savva, M.; Manning, C. D. SceneSeer: 3D scene design with natural language. arXiv preprint arXiv:1703.00050, 2017.Google Scholar
  14. [14]
    Chen, K.; Lai, Y.-K.; Hu, S.-M. 3D indoor scene modeling from RGB-D data: a survey. Computational Visual Media Vol. 1, No. 4, 267–278, 2015.CrossRefGoogle Scholar
  15. [15]
    Mihalcea, R.; Radev, D. Graph-based Natural Language Processing and Information Retrieval. Cambridge University Press, 2011.CrossRefzbMATHGoogle Scholar
  16. [16]
    Yao, X.; Van Durme, B. Information extraction over structured data: Question answering with freebase. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 956–966, 2014.Google Scholar
  17. [17]
    Socher, R.; Chen, D.; Manning, C. D.; Ng, A. Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of the Advances in Neural Information Processing Systems 26, 926–934, 2013.Google Scholar
  18. [18]
    Marino, K.; Salakhutdinov, R.; Gupta, A. The more you know: Using knowledge graphs for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2673–2681, 2017.Google Scholar
  19. [19]
    Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P. N.; Hellmann, S.; Morsey, M.; van Kleef, P.; Auer, S.; Bizer, C. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web Vol. 6, No. 2, 167–195, 2015.Google Scholar
  20. [20]
    Chang, A. X.; Savva, M.; Manning, C. D. Learning spatial knowledge for text to 3D scene generation. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2028–2038, 2014.Google Scholar
  21. [21]
    Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.; Murphy, K.; Strohmann, T.; Sun, S.; Zhang, W. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 601–610, 2014.Google Scholar
  22. [22]
    Hoffart, J.; Suchanek, F. M.; Berberich, K.; Lewis-Kelham, E.; de Melo, G.; Weikum, G. YAGO2: Exploring and querying world knowledge in time, space, context, and many languages. In: Proceedings of the 20th International Conference Companion on World Wide Web, 229–232, 2011.Google Scholar
  23. [23]
    Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; Xiao, J.; Yi, L.; Yu, F. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012, 2015.Google Scholar
  24. [24]
    Miller. G. A. WordNet: A lexical database for English. Communications of the ACM Vol. 38, No. 11, 39–41, 1995.CrossRefGoogle Scholar
  25. [25]
    Fisher, M.; Savva, M.; Hanrahan, P. Characterizing structural relationships in scenes using graph kernels. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 34, 2011.Google Scholar
  26. [26]
    Zeng, J.; Cheung, W. K.; Liu, J. Learning topic models by belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 5, 1121–1134, 2013.CrossRefGoogle Scholar
  27. [27]
    Kschischang, F. R.; Frey, B. J. Iterative decoding of compound codes by probability propagation in graphical models. IEEE Journal on Selected Areas in Communications Vol. 16, No. 2, 219–230, 1998.CrossRefGoogle Scholar
  28. [28]
    Blei, D. M.; Ng, A. Y.; Jordan, M. I. Latent dirichlet allocation. Journal of Machine Learning Research Vol. 3, 993–1022, 2003.zbMATHGoogle Scholar
  29. [29]
    Abbeel, P.; Koller, D.; Ng, A. Y. Learning factor graphs in polynomial time and sample complexity. Journal of Machine Learning Research Vol. 7, 1743–1788, 2006.MathSciNetzbMATHGoogle Scholar
  30. [30]
    Gelfand, A. E.; Hills, S. E.; Racine-Poon, A.; Smith, A. F. M. Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association Vol. 85, No. 412, 972–985, 1990.CrossRefGoogle Scholar
  31. [31]
    Schwarz, G. Estimating the dimension of a model. The Annals of Statistics Vol. 6, No. 2, 461–464, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Soleimani, H.; Miller, D. J. Parsimonious topic models with salient word discovery. IEEE Transactions on Knowledge and Data Engineering Vol. 27, No. 3, 824–837, 2015.CrossRefGoogle Scholar
  33. [33]
    Lepage, G. P. A new algorithm for adaptive multidimensional integration. Journal of Computational Physics Vol. 27, No. 2, 192–203, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    The SIMS 4. Available at the-sims?isLocalized=true.Google Scholar
  35. [35]
    Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, 945–953, 2015.Google Scholar
  36. [36]
    Ma, R.; Li, H.; Zou, C.; Liao, Z.; Tong, X.; Zhang, H. Action-driven 3D indoor scene evolution. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 173, 2016.Google Scholar
  37. [37]
    Merrell, P.; Schkufza, E.; Li, Z.; Agrawala, M.; Koltun, V. Interactive furniture layout using interior design guidelines. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 87, 2011.Google Scholar
  38. [38]
    Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2181–2187, 2015.Google Scholar
  39. [39]
    Fisher, M.; Savva, M.; Li, Y.; Hanrahan, P.; Niener, M. Activity-centric scene synthesis for functional 3D scene modeling. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 179, 2015.Google Scholar

Copyright information

© The Author(s) 2018

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from To submit a manuscript, please go to

Authors and Affiliations

  • Yuan Liang
    • 1
  • Fei Xu
    • 1
  • Song-Hai Zhang
    • 1
  • Yu-Kun Lai
    • 2
  • Taijiang Mu
    • 1
    Email author
  1. 1.TNList, Department of Computer ScienceTsinghua UniversityBeijingChina
  2. 2.School of Computer Science and InformaticsCardiff UniversityCardiffUK

Personalised recommendations