Computational Visual Media

, Volume 3, Issue 1, pp 3–20 | Cite as

A survey of the state-of-the-art in patch-based synthesis

Open Access
Review Article

Abstract

This paper surveys the state-of-the-art of research in patch-based synthesis. Patch-based methods synthesize output images by copying small regions from exemplar imagery. This line of research originated from an area called “texture synthesis”, which focused on creating regular or semi-regular textures from small exemplars. However, more recently, much research has focused on synthesis of larger and more diverse imagery, such as photos, photo collections, videos, and light fields. Additionally, recent research has focused on customizing the synthesis process for particular problem domains, such as synthesizing artistic or decorative brushes, synthesis of rich materials, and synthesis for 3D fabrication. This report investigates recent papers that follow these themes, with a particular emphasis on papers published since 2009, when the last survey in this area was published. This survey can serve as a tutorial for readers who are not yet familiar with these topics, as well as provide comparisons between these papers, and highlight some open problems in this area.

Keywords

texture patch image synthesis texture synthesis 

References

  1. [1]
    Wei, L.-Y.; Lefebvre, S.; Kwatra, V.; Turk, G. State of the art in example-based texture synthesis. In: Proceedings of Eurographics 2009, State of the Art Report, EG-STAR, 93–117, 2009.Google Scholar
  2. [2]
    Efros, A. A.; Freeman, W. T. Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 341–346, 2001.Google Scholar
  3. [3]
    Praun, E.; Finkelstein, A.; Hoppe, H. Lapped textures. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 465–470, 2000.Google Scholar
  4. [4]
    Liang, L.; Liu, C.; Xu, Y.-Q.; Guo, B.; Shum, H.-Y. Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics Vol. 20, No. 3, 127–150, 2001.CrossRefGoogle Scholar
  5. [5]
    Kwatra, V.; Schödl, A.; Essa, I.; Turk, G.; Bobick, A. Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics Vol. 22, No. 3, 277–286, 2003.CrossRefGoogle Scholar
  6. [6]
    Wexler, Y.; Shechtman, E.; Irani, M. Space-time completion of video. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 29, No. 3, 463–476, 2007.CrossRefGoogle Scholar
  7. [7]
    Simakov, D.; Caspi, Y.; Shechtman, E.; Irani, M. Summarizing visual data using bidirectional similarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–8, 2008.Google Scholar
  8. [8]
    Barnes, C.; Shechtman, E.; Finkelstein, A.; Goldman, D. B. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics Vol. 28, No. 3, Article No. 24, 2009.Google Scholar
  9. [9]
    Kaspar, A.; Neubert, B.; Lischinski, D.; Pauly, M.; Kopf, J. Self tuning texture optimization. Computer Graphics Forum Vol. 34, No. 2, 349–359, 2015.CrossRefGoogle Scholar
  10. [10]
    Burt, P. J. Fast filter transform for image processing. Computer Graphics and Image Processing Vol. 16, No. 1, 20–51, 1981.CrossRefGoogle Scholar
  11. [11]
    Lowe, D. G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision Vol. 60, No. 2, 91–110, 2004.CrossRefGoogle Scholar
  12. [12]
    Barnes, C.; Shechtman, E.; Goldman, D. B.; Finkelstein, A. The generalized PatchMatch correspondence algorithm. In: Computer Vision— ECCV 2010. Daniilidis, K.; Maragos, P.; Paragios, N. Eds. Springer Berlin Heidelberg, 29–43, 2010.CrossRefGoogle Scholar
  13. [13]
    Xiao, C.; Liu, M.; Yongwei, N.; Dong, Z. Fast exact nearest patch matching for patch-based image editing and processing. IEEE Transactions on Visualization and Computer Graphics Vol. 17, No. 8, 1122–1134, 2011.CrossRefGoogle Scholar
  14. [14]
    Ashikhmin, M. Synthesizing natural textures. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, 217–226, 2001.CrossRefGoogle Scholar
  15. [15]
    Tong, X.; Zhang, J.; Liu, L.; Wang, X.; Guo, B.; Shum, H.-Y. Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Transactions on Graphics Vol. 21, No. 3, 665–672, 2002.CrossRefGoogle Scholar
  16. [16]
    Barnes, C.; Zhang, F.-L.; Lou, L.; Wu, X.; Hu, S.-M. PatchTable: Efficient patch queries for large datasets and applications. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 97, 2015.Google Scholar
  17. [17]
    Korman, S.; Avidan, S. Coherency sensitive hashing. In: Proceedings of the IEEE International Conference on Computer Vision, 1607–1614, 2011.Google Scholar
  18. [18]
    He, K.; Sun, J. Computing nearest-neighbor fields via propagation-assisted kd-trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 111–118, 2012.Google Scholar
  19. [19]
    Olonetsky, I.; Avidan, S. TreeCANN-k-d tree coherence approximate nearest neighbor algorithm. In: Computer Vision—ECCV 2012. Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds. Springer Berlin Heidelberg, 602–615, 2012.CrossRefGoogle Scholar
  20. [20]
    Barnes, C.; Goldman, D. B.; Shechtman, E.; Finkelstein, A. The PatchMatch randomized matching algorithm for image manipulation. Communications of the ACM Vol. 54, No. 11, 103–110, 2011.CrossRefGoogle Scholar
  21. [21]
    Datar, M.; Immorlica, N.; Indyk, P.; Mirrokni, V. S. Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the 20th Annual Symposium on Computational Geometry, 253–262, 2004.Google Scholar
  22. [22]
    Wei, L.-Y.; Levoy, M. Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 479–488, 2000.Google Scholar
  23. [23]
    Dunteman, G. H. Principal Components Analysis. Sage, 1989.CrossRefGoogle Scholar
  24. [24]
    Muja, M.; Lowe, D. G. Fast approximate nearest neighbors with automatic algorithm configuration. In: Proceedings of VISAPP International Conference on Computer Vision Theory and Applications, 331–340, 2009.Google Scholar
  25. [25]
    Bleyer, M.; Rhemann, C.; Rother, C. PatchMatch stereo-stereo matching with slanted support windows. In: Proceedings of the British Machine Vision Conference, 14.1–14.11, 2011.Google Scholar
  26. [26]
    Lu, J.; Yang, H.; Min, D.; Do, M. N. Patch match filter: Efficient edge-aware filtering meets randomized search for fast correspondence field estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1854–1861, 2013.Google Scholar
  27. [27]
    Chen, Z.; Jin, H.; Lin, Z.; Cohen, S.; Wu, Y. Large displacement optical flow from nearest neighbor fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2443–2450, 2013.Google Scholar
  28. [28]
    Besse, F.; Rother, C.; Fitzgibbon, A.; Kautz, J. PMBP: PatchMatch belief propagation for correspondence field estimation. International Journal of Computer Vision Vol. 110, No. 1, 2–13, 2014.CrossRefGoogle Scholar
  29. [29]
    Guillemot, C.; Le Meur, O. Image inpainting: Overview and recent advances. IEEE Signal Processing Magazine Vol. 31, No. 1, 127–144, 2014.CrossRefGoogle Scholar
  30. [30]
    Cao, F.; Gousseau, Y.; Masnou, S.; Pérez, P. Geometrically guided exemplar-based inpainting. SIAM Journal on Imaging Sciences Vol. 4, No. 4, 1143–1179, 2011.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    Huang, J.-B.; Kang, S. B.; Ahuja, N.; Kopf, J. Image completion using planar structure guidance. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 129, 2014.Google Scholar
  32. [32]
    Bugeau, A.; Bertalmio, M.; Caselles, V.; Sapiro, G. A comprehensive framework for image inpainting. IEEE Transactions on Image Processing Vol. 19, No. 10, 2634–2645, 2010.MathSciNetCrossRefGoogle Scholar
  33. [33]
    Arias, P.; Facciolo, G.; Caselles, V.; Sapiro, G. A variational framework for exemplar-based image inpainting. International Journal of Computer Vision Vol. 93, No. 3, 319–347, 2011.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    Kopf, J.; Kienzle, W.; Drucker, S.; Kang, S. B. Quality prediction for image completion. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 131, 2012.Google Scholar
  35. [35]
    Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A. A. Context encoders: Feature learning by inpainting. arXiv preprint arXiv:1604.07379, 2016.Google Scholar
  36. [36]
    Zhu, Z.; Huang, H.-Z.; Tan, Z.-P.; Xu, K.; Hu, S.-M. Faithful completion of images of scenic landmarks using internet images. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 8, 1945–1958, 2015.CrossRefGoogle Scholar
  37. [37]
    Cho, T. S.; Butman, M.; Avidan, S.; Freeman, W. T. The patch transform and its applications to image editing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–8, 2008.Google Scholar
  38. [38]
    Cheng, M.-M.; Zhang, F.-L.; Mitra, N. J.; Huang, X.; Hu, S.-M. RepFinder: Finding approximately repeated scene elements for image editing. ACM Transactions on Graphics Vol. 29, No. 4, Article No. 83, 2010.Google Scholar
  39. [39]
    Huang, H.; Zhang, L.; Zhang, H.-C. RepSnapping: Efficient image cutout for repeated scene elements. Computer Graphics Forum Vol. 30, No. 7, 2059–2066, 2011.CrossRefGoogle Scholar
  40. [40]
    Zhang, F.-L.; Cheng, M.-M.; Jia, J.; Hu, S.-M. ImageAdmixture: Putting together dissimilar objects from groups. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 11, 1849–1857, 2012.CrossRefGoogle Scholar
  41. [41]
    Buades, A.; Coll, B.; Morel, J.-M. A nonlocal algorithm for image denoising. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, 60–65, 2005.MATHGoogle Scholar
  42. [42]
    Liu, C.; Freeman, W. T. A high-quality video denoising algorithm based on reliable motion estimation. In: Computer Vision—ECCV 2010. Daniilidis, K.; Maragos, P.; Paragios, N. Eds. Springer Berlin Heidelberg, 706–719, 2010.CrossRefGoogle Scholar
  43. [43]
    Deledalle, C.-A.; Salmon, J.; Dalalyan, A. S. Image denoising with patch based PCA: Local versus global. In: Proceedings of the 22nd British Machine Vision Conference, 25.1–25.10, 2011.Google Scholar
  44. [44]
    Chatterjee, P.; Milanfar, P. Patch-based nearoptimal image denoising. IEEE Transactions on Image Processing Vol. 21, No. 4, 1635–1649, 2012.MathSciNetCrossRefGoogle Scholar
  45. [45]
    Karacan, L.; Erdem, E.; Erdem, A. Structurepreserving image smoothing via region covariances. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 176, 2013.Google Scholar
  46. [46]
    Liu, Q.; Zhang, C.; Guo, Q.; Zhou, Y. A nonlocal gradient concentration method for image smoothing. Computational Visual Media Vol. 1, No. 3, 197–209, 2015.CrossRefGoogle Scholar
  47. [47]
    Tong, R.-T.; Zhang, Y.; Cheng, K.-L. StereoPasting: Interactive composition in stereoscopic images. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 8, 1375–1385, 2013.CrossRefGoogle Scholar
  48. [48]
    Wang, L.; Jin, H.; Yang, R.; Gong, M. Stereoscopic inpainting: Joint color and depth completion from stereo images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–8, 2008.Google Scholar
  49. [49]
    Daribo, I.; Pesquet-Popescu, B. Depth-aided image inpainting for novel view synthesis. In: Proceedings of IEEE International Workshop on Multimedia Signal Processing, 167–170, 2010.Google Scholar
  50. [50]
    Kim, C.; Hornung, A.; Heinzle, S.; Matusik, W.; Gross, M. Multi-perspective stereoscopy from light fields. ACM Transactions on Graphics Vol. 30, No. 6, Article No. 190, 2011.Google Scholar
  51. [51]
    Morse, B.; Howard, J.; Cohen, S.; Price, B. PatchMatch-based content completion of stereo image pairs. In: Proceedings of the 2nd International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 555–562, 2012.Google Scholar
  52. [52]
    Zhang, L.; Zhang, Y.-H.; Huang, H. Efficient variational light field view synthesis for making stereoscopic 3D images. Computer Graphics Forum Vol. 34, No. 7, 183–191, 2015.CrossRefGoogle Scholar
  53. [53]
    Zhang, F.-L.; Wang, J.; Shechtman, E.; Zhou, Z.-Y.; Shi, J.-X.; Hu, S.-M. PlenoPatch: Patch-based plenoptic image manipulation. IEEE Transactions on Visualization and Computer Graphics DOI: 10.1109/TVCG.2016.2532329, 2016.Google Scholar
  54. [54]
    HaCohen, Y.; Shechtman, E.; Goldman, D. B.; Lischinski, D. Non-rigid dense correspondence with applications for image enhancement. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 70, 2011.Google Scholar
  55. [55]
    HaCohen, Y.; Shechtman, E.; Goldman, D. B.; Lischinski, D. Optimizing color consistency in photo collections. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 38, 2013.Google Scholar
  56. [56]
    Gould, S.; Zhang, Y. PatchMatchGraph: Building a graph of dense patch correspondences for label transfer. In: Computer Vision—ECCV2012. Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds. Springer Berlin Heidelberg, 439–452, 2012.Google Scholar
  57. [57]
    Hu, S.-M.; Zhang, F.-L.; Wang, M.; Martin, R. R.; Wang, J. PatchNet: A patch-based image representation for interactive library-driven image editing. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 196, 2013.Google Scholar
  58. [58]
    Kalantari, N. K.; Shechtman, E.; Barnes, C.; Darabi, S.; Goldman, D. B.; Sen, P. Patch-based high dynamic range video. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 202, 2013.Google Scholar
  59. [59]
    Granados, M.; Kim, K. I.; Tompkin, J.; Kautz, J.; Theobalt, C. Background inpainting for videos with dynamic objects and a free-moving camera. In: Computer Vision—ECCV 2012. Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds. Springer Berlin Heidelberg, 682–695, 2012.CrossRefGoogle Scholar
  60. [60]
    Newson, A.; Almansa, A.; Fradet, M.; Gousseau, Y.; Pérez, P. Video inpainting of complex scenes. SIAM Journal on Imaging Sciences Vol. 7, No. 4, 1993–2019, 2014.MathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    Barnes, C.; Goldman, D. B.; Shechtman, E.; Finkelstein, A. Video tapestries with continuous temporal zoom. ACM Transactions on Graphics Vol. 29, No. 4, Article No. 89, 2010.Google Scholar
  62. [62]
    Sen, P.; Kalantari, N. K.; Yaesoubi, M.; Darabi, S.; Goldman, D. B.; Shechtman, E. Robust patchbased hdr reconstruction of dynamic scenes. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 203, 2012.Google Scholar
  63. [63]
    Cho, S.; Wang, J.; Lee, S. Video deblurring for hand-held cameras using patch-based synthesis. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 64, 2012.Google Scholar
  64. [64]
    Sun, L.; Cho, S.; Wang, J.; Hays, J. Edgebased blur kernel estimation using patch priors. In: Proceedings of the IEEE International Conference on Computational Photography, 1–8, 2013.Google Scholar
  65. [65]
    Sun, L.; Cho, S.; Wang, J.; Hays, J. Good image priors for non-blind deconvolution. In: Computer Vision—ECCV 2014. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer International Publishing, 231–246, 2014.Google Scholar
  66. [66]
    Hertzmann, A.; Jacobs, C. E.; Oliver, N.; Curless, B.; Salesin, D. H. Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 327–340, 2001.Google Scholar
  67. [67]
    Bénard, P.; Cole, F.; Kass, M.; Mordatch, I.; Hegarty, J.; Senn, M. S.; Fleischer, K.; Pesare, D.; Breeden, K. Stylizing animation by example. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 119, 2013.Google Scholar
  68. [68]
    Zeng, K.; Zhao, M.; Xiong, C.; Zhu, S.-C. From image parsing to painterly rendering. ACM Transactions on Graphics Vol. 29, No. 1, Article No. 2, 2009.Google Scholar
  69. [69]
    Fišer, J.; Jamriška, O.; Lukáč, M.; Shechtman, E.; Asente, P.; Lu, J.; Sýkora, D. StyLit: Illuminationguided example-based stylization of 3D renderings. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 92, 2016.Google Scholar
  70. [70]
    Sloan, P.-P. J.; Martin, W.; Gooch, A.; Gooch, B. The lit sphere: A model for capturing NPR shading from art. In: Proceedings of Graphics Interface, 143–150, 2001.Google Scholar
  71. [71]
    Heckbert, P. S. Adaptive radiosity textures for bidirectional ray tracing. ACM SIGGRAPH Computer Graphics Vol. 24, No. 4, 145–154, 1990.CrossRefGoogle Scholar
  72. [72]
    Lukáč, M.; Fišer, J.; Bazin, J.-C.; Jamriška, O.; Sorkine-Hornung, A.; Sýkora, D. Painting by feature: Texture boundaries for example-based image creation. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 116, 2013.Google Scholar
  73. [73]
    Ritter, L.; Li, W.; Curless, B.; Agrawala, M.; Salesin, D. Painting with texture. In: Proceedings of the Eurographics Symposium on Rendering, 371–376, 2006.Google Scholar
  74. [74]
    Lukáč, M.; Fišer, J.; Asente, P.; Lu, J.; Shechtman, E.; Sýkora, D. Brushables: Examplebased edge-aware directional texture painting. Computer Graphics Forum Vol. 34, No. 7, 257–267, 2015.CrossRefGoogle Scholar
  75. [75]
    Lu, J.; Barnes, C.; DiVerdi, S.; Finkelstein, A. RealBrush: Painting with examples of physical media. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 117, 2013.Google Scholar
  76. [76]
    Xing, J.; Chen, H.-T.; Wei, L.-Y. Autocomplete painting repetitions. ACM Transactions on Graphics Vol. 33, No. 6, Article No. 172, 2014.Google Scholar
  77. [77]
    Lu, J.; Barnes, C.; Wan, C.; Asente, P.; Mech, R.; Finkelstein, A. DecoBrush: Drawing structured decorative patterns by example. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 90, 2014.Google Scholar
  78. [78]
    Zhou, S.; Lasram, A.; Lefebvre, S. By-example synthesis of curvilinear structured patterns. Computer Graphics Forum Vol. 32, No. 2pt3, 355–360, 2013.CrossRefGoogle Scholar
  79. [79]
    Zhou, S.; Jiang, C.; Lefebvre, S. Topologyconstrained synthesis of vector patterns. ACM Transactions on Graphics Vol. 33, No. 6, Article No. 215, 2014.Google Scholar
  80. [80]
    Bhat, P.; Ingram, S.; Turk, G. Geometric texture synthesis by example. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 41–44, 2004.CrossRefGoogle Scholar
  81. [81]
    Kopf, J.; Fu, C.-W.; Cohen-Or, D.; Deussen, O.; Lischinski, D.; Wong, T.-T. Solid texture synthesis from 2D exemplars. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 2, 2007.Google Scholar
  82. [82]
    Dong, Y.; Lefebvre, S.; Tong, X.; Drettakis, G. Lazy solid texture synthesis. Computer Graphics Forum Vol. 27, No. 4, 1165–1174, 2008.CrossRefGoogle Scholar
  83. [83]
    Lee, S.-H.; Park, T.; Kim, J.-H.; Kim, C.-H. Adaptive synthesis of distance fields. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 7, 1135–1145, 2012.CrossRefGoogle Scholar
  84. [84]
    Ma, C.; Wei, L.-Y.; Tong, X. Discrete element textures. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 62, 2011.Google Scholar
  85. [85]
    Ma, C.; Wei, L.-Y.; Lefebvre, S.; Tong, X. Dynamic element textures. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 90, 2013.Google Scholar
  86. [86]
    Dumas, J.; Lu, A.; Lefebvre, S.; Wu, J.; München, T. U.; Dick, C.; München, T. U. By-example synthesis of structurally sound patterns. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 137, 2015.Google Scholar
  87. [87]
    Martínez, J.; Dumas, J.; Lefebvre, S.; Wei, L.-Y. Structure and appearance optimization for controllable shape design. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 229, 2015.Google Scholar
  88. [88]
    Chen, W.; Zhang, X.; Xin, S.; Xia, Y.; Lefebvre, S.; Wang, W. Synthesis of filigrees for digital fabrication. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 98, 2016.Google Scholar
  89. [89]
    Kwatra, V.; Adalsteinsson, D.; Kim, T.; Kwatra, N.; Carlson, M.; Lin, M. Texturing fluids. IEEE Transactions on Visualization and Computer Graphics Vol. 13, No. 5, 939–952, 2007.CrossRefGoogle Scholar
  90. [90]
    Bargteil, A. W.; Sin, F.; Michaels, J. E.; Goktekin, T. G.; O’Brien, J. F. A texture synthesis method for liquid animations. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 345–351, 2006.Google Scholar
  91. [91]
    Ma, C.; Wei, L.-Y.; Guo, B.; Zhou, K. Motion field texture synthesis. ACM Transactions on Graphics Vol. 28, No. 5, Article No. 110, 2009.Google Scholar
  92. [92]
    Browning, M.; Barnes, C.; Ritter, S.; Finkelstein, A. Stylized keyframe animation of fluid simulations. In: Proceedings of the Workshop on Non-Photorealistic Animation and Rendering, 63–70, 2014.Google Scholar
  93. [93]
    Jamriška, O.; Fišer, J.; Asente, P.; Lu, J.; Shechtman, E.; Sýkora, D. LazyFluids: Appearance transfer for fluid animations. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 92, 2015.Google Scholar
  94. [94]
    Darabi, S.; Shechtman, E.; Barnes, C.; Goldman, D. B.; Sen, P. Image melding: Combining inconsistent images using patch-based synthesis. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 82, 2012.Google Scholar
  95. [95]
    Aittala, M.; Weyrich, T.; Lehtinen, J. Two-shot SVBRDF capture for stationary materials. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 110, 2015.Google Scholar
  96. [96]
    Bellini, R.; Kleiman, Y.; Cohen-Or, D. Time-varying weathering in texture space. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 141, 2016.Google Scholar
  97. [97]
    Diamanti, O.; Barnes, C.; Paris, S.; Shechtman, E.; Sorkine-Hornung, O. Synthesis of complex image appearance from limited exemplars. ACM Transactions on Graphics Vol. 34, No. 2, Article No. 22, 2015.Google Scholar
  98. [98]
    Gatys, L. A.; Ecker, A. S.; Bethge, M. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576, 2015.Google Scholar
  99. [99]
    Ulyanov, D.; Lebedev, V.; Vedaldi, A.; Lempitsky, V. Texture networks: Feed-forward synthesis of textures and stylized images. arXiv preprint arXiv:1603.03417, 2016.Google Scholar
  100. [100]
    Denton, E. L.; Chintala, S.; Fergus, R. Deep generative image models using a Laplacian pyramid of adversarial networks. In: Proceedings of Advances in Neural Information Processing Systems, 1486–1494, 2015.Google Scholar

Copyright information

© The Author(s) 2016

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Authors and Affiliations

  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.TNListTsinghua UniversityBeijingChina

Personalised recommendations