Computational Visual Media

, Volume 2, Issue 1, pp 19–30 | Cite as

Quality measures of reconstruction filters for stereoscopic volume rendering

  • David A. T. Roberts
  • Ioannis Ivrissimtzis
Open Access
Research Article


In direct volume rendering (DVR), the choice of reconstruction filter can have a significant effect on the visual appearance of the images produced and thus, on the perceived quality of a DVR rendered scene. This paper presents the results of a subjective experiment where participants stereoscopically viewed DVR rendered scenes and rated their subjective quality. The statistical analysis of the results focuses on the relationship between the quality of the stereoscopic scene and properties of the filters such as post-aliasing and smoothing, as well as the relationship between the quality of the stereoscopic scene and properties of the rendered images such as shape compactness.

The experiment evaluated five reconstruction filters on four different volumetric datasets. Participants rated the stereoscopic scenes on four quality measures: depth quality, depth layout, lack of jaggyness, and sharpness. The results show that the correlation between the quality measures and post-aliasing and smoothing, which are properties associated with each reconstruction filter, is moderate and statistically insignificant. On the other hand, the correlation between the quality measures and compactness, which is a property specific to each rendered image, is strong and statistically significant.


direct volume rendering (DVR) reconstruction filters stereoscopic user evaluations 


  1. [1]
    Boucheny, C.; Bonneau, G.; Droulez, J.; Thibault, G.; Ploix, S. A perceptive evaluation of volume rendering techniques. ACM Transactions on Applied Perception Vol. 5, No. 4, Article No. 23, 2009.CrossRefGoogle Scholar
  2. [2]
    Zheng, L.; Wu, Y.; Ma, K.-L. Perceptually based depth-ordering enhancement for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 3, 446–459, 2012.CrossRefGoogle Scholar
  3. [3]
    Cho, I.; Wartell, Z.; Dou, W.; Wang, X.; Ribarsky, W. Stereo and motion cues effect on depth perception in volumetric data. In: Proceedings of SPIE 9011, Stereoscopic Displays and Applications XXV, 901118, 2014.Google Scholar
  4. [4]
    Kersten, M. Stereoscopic volume rendering of medical images. Master Thesis. Queen’s University, 2005.Google Scholar
  5. [5]
    Laha, B.; Sensharma, K.; Schiffbauer, J. D.; Bowman, D. A. Effects of immersion on visual analysis of Volume data. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 4, 597–606, 2012.CrossRefGoogle Scholar
  6. [6]
    Mitchell, D. P.; Netravali, A. N. Reconstruction filters in computer-graphics. ACM SIGGRAPH Computer Graphics Vol. 22, No. 4, 221–228, 1988.CrossRefGoogle Scholar
  7. [7]
    Carlbom, I. Optimal filter design for volume reconstruction and visualization. In: Proceedings of IEEE Conference on Visualization, 54–61, 1993.Google Scholar
  8. [8]
    Csebfalvi, B. An evaluation of prefiltered reconstruction schemes for volume rendering. IEEE Transactions on Visualization and Computer Graphics Vol. 14, No. 2, 289–301, 2008.CrossRefGoogle Scholar
  9. [9]
    Marschner, S. R.; Lobb, R. J. An evaluation of reconstruction filters for Volume rendering. In: Proceedings of the Conference on Visualization, 100–107, 1994.CrossRefGoogle Scholar
  10. [10]
    Möller, T.; Machiraju, R.; Mueller, K.; Yagel, R. Classification and local error estimation of interpolation and derivative filters for volume rendering. In: Proceedings of the Symposium on Volume Visualization, 71, 1996.Google Scholar
  11. [11]
    Roberts, D. A. T.; Ivrissimtzis, I.; Holliman, N. An evaluation of reconstruction filters for a path-searching task in 3D. In: Proceedings of the 6th International Workshop on Quality of Multimedia Experience, 165–170, 2014.Google Scholar
  12. [12]
    Theuβl, T.; Hauser, H.; Gröller, E. Mastering windows: Improving reconstruction. In: Proceedings of the IEEE symposium on Volume visualization, 101–108, 2000.Google Scholar
  13. [13]
    Blu, T.; Thevenaz, P.; Unser, M. Linear interpolation revitalized. IEEE Transactions on Image Processing Vol. 13, No. 5, 710–719, 2004.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Hou, H. S.; Andrews, H. Cubic splines for image interpolation and digital filtering. IEEE Transactions on Acoustics, Speech and Signal Processing Vol. 26, No. 6, 508–517, 1978.CrossRefzbMATHGoogle Scholar
  15. [15]
    Keys, R. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech and Signal Processing Vol. 29, No. 6, 1153–1160, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Kersten-Oertel, M.; Chen, S.-J.; Collin, D. L. An evaluation of depth enhancing perceptual cues for vascular Volume visualization in neurosurgery. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 3, 391–403, 2014.CrossRefGoogle Scholar
  17. [17]
    Ropinski, T.; Steinicke, F.; Hinrichs, K. Visually supporting depth perception in angiography imaging. In: Lecture Notes in Computer Science, Vol. 4073. Butz, A.; Fisher, B.; Krü ger, A.; Olivier, P. Eds. Springer Berlin Heidelberg, 93–104, 2006.CrossRefGoogle Scholar
  18. [18]
    Agus, M.; Bettio, F.; Giachetti, A.; Gobbetti, E.; Guitián, J. A. I.; Marton, F.; Nilsson, J.; Pintore, G. An interactive 3D medical visualization system based on a light field display. The Visual Computer Vol. 25, No. 9, 883–893, 2009.CrossRefGoogle Scholar
  19. [19]
    Prabhat A.; Forsberg, A.; Katzourin, M.; Wharton, K.; Slater, M. A comparative study of desktop, fishtank, and cave systems for the exploration of volume rendered confocal data sets. IEEE Transactions on Visualization and Computer Graphics Vol. 14, No. 3, 551–563, 2008.CrossRefGoogle Scholar
  20. [20]
    Li, W.; Goodchild, M. F.; Church, R. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. International Journal of Geographical Information Science Vol. 27, No. 6, 1227–1250, 2013.CrossRefGoogle Scholar
  21. [21]
    Osserman, R. The isoperimetric inequality. Bulletin of the American Mathematical Society Vol. 84, No. 6, 1182–1239, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Otsu, N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics Vol. 9, No. 1, 62–66, 1979.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Lebreton, P.; Raake, A.; Barkowsky, M.; Le Callet, P. Evaluating depth perception of 3D stereoscopic videos. IEEE Journal of Selected Topics in Signal Processing Vol. 6, No. 6, 710–720, 2012.CrossRefGoogle Scholar
  24. [24]
    Pfautz, J. D. Depth perception in computer graphics. Ph.D. Thesis. University of Cambridge, 2000.Google Scholar
  25. [25]
    Costa, M. F.; Moreira, S. M. C. F.; Hamer, R. D.; Ventura, D. F. Effects of age and optical blur on real depth stereoacuity. Ophthalmic and Physiological Optics Vol. 30, No. 5, 660–666, 2010.CrossRefGoogle Scholar
  26. [26]
    Ware, C.; Franck, G. Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Transactions on Graphics Vol. 15, No. 2, 121–140, 1996.CrossRefGoogle Scholar
  27. [27]
    Seuntiens, P.; Meesters, L.; Ijsselsteijn, W. Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric JPEG coding and camera separation. ACM Transactions on Applied Perception Vol. 3, No. 2, 95–109, 2006.CrossRefGoogle Scholar
  28. [28]
    Tam, W. J.; Stelmach, L. B.; Corriveau, P. J. Psychovisual aspects of viewing stereoscopic video sequences. In: Proceedings of SPIE 3295, Stereoscopic Displays and Virtual Reality Systems V, 226, 1998.CrossRefGoogle Scholar
  29. [29]
    Jää-Aro, K.-M.; Kjelldahl, L. Effects of image resolution on depth perception in stereo and nonstereo images. In: Proceedings of SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 319, 1997.CrossRefGoogle Scholar
  30. [30]
    Hancock, D. Distributed volume rendering and stereoscopic display for radiotherapy treatment planning. Ph.D. Thesis. University of Manchester, 2001.Google Scholar
  31. [31]
    Reinhart, W. F. Gray-scale requirements for anti-aliasing of stereoscopic graphic imagery. In: Proceedings of SPIE 1669, Stereoscopic Displays and Applications III, 90, 1992.Google Scholar
  32. [32]
    Novotny, P.; Dimitrov, L. I.; Sramek, M. Enhanced voxelization and representation of objects with sharp details in truncated distance fields. IEEE Transactions on Visualization and Computer Graphics Vol. 16, No. 3, 484–498, 2010.CrossRefGoogle Scholar
  33. [33]
    Laha, B.; Bowman, D.; Socha, J. J. Effects of VRsystem fidelity on analyzing isosurface visualization of Volume datasets. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 4, 513–522, 2014.CrossRefGoogle Scholar
  34. [34]
    Recommendation ITU-R BT.500-11. Methodology for the subjective assessment of the quality of television pictures. Technical Report, 1998. Available at pubrec/itu-r/rec/bt/RREC- BT.500-11-200206-S!!PDF-E.pdf.Google Scholar
  35. [35]
    Van Dijk, A. M.; Martens, J.-B.; Watson, A. B. Quality assessment of coded images using numerical category scaling. In: Proceedings of SPIE 2451, Advanced Image and Video Communications and Storage Technologies, 90, 1995.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of Engineering and Computing SciencesDurham UniversityDurhamUK

Personalised recommendations