Advertisement

Computational Visual Media

, Volume 1, Issue 4, pp 279–289 | Cite as

Local voxelizer: A shape descriptor for surface registration

  • Peng SongEmail author
Open Access
Research Article

Abstract

Surface registration brings multiple scans into a common coordinate system by aligning their overlapping components. This can be achieved by finding a few pairs of matched points on different scans using local shape descriptors and employing the matches to compute transformations to produce the alignment. By defining a unique local reference frame (LRF) and attaching an LRF to shape descriptors, the transformation can be computed using only one match based on aligning the LRFs. This paper proposes a local voxelizer descriptor, and the key ideas are to define a unique LRF using the support around a basis point, to perform voxelization for the local shape within a cubical volume aligned with the LRF, and to concatenate local features extracted from each voxel to construct the descriptor. An automatic rigid registration approach is given based on the local voxelizer and an expanding strategy that merges descriptor representations of aligned scans. Experiments show that our registration approach allows the acquisition of 3D models of various objects, and that the local voxelizer is robust to mesh noise and varying mesh resolution, in comparison to two state-of-the-art shape descriptors.

Keywords

shape descriptor surface registration scan alignment 3D reconstruction 

References

  1. [1]
    Newcombe, R. A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A. J.; Kohli, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In: Proceedings of the 10th IEEE International Symposium on Mixed and Augmented Reality, 127–136, 2011.Google Scholar
  2. [2]
    Mellado, N.; Aiger, D.; Mitra, N. J. Super 4PCS fast global pointcloud registration via smart indexing. Computer Graphics Forum Vol. 33, No. 5, 205–215, 2014.CrossRefGoogle Scholar
  3. [3]
    Besl, P. J.; McKay, N. D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 14, No. 2, 239–256, 1992.CrossRefGoogle Scholar
  4. [4]
    Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image and Vision Computing Vol. 10, No. 3, 145–155, 1992.CrossRefGoogle Scholar
  5. [5]
    Chen, C.-S.; Hung, Y.-P.; Cheng, J.-B. RANSACbased DARCES: A new approach to fast automatic registration of partially overlapping range images. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 21, No. 11, 1229–1234, 1999.CrossRefGoogle Scholar
  6. [6]
    Mitra, N. J.; Gelfand, N.; Pottmann, H.; Guibas, L. Registration of point cloud data from a geometric optimization perspective. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 22–31, 2004.CrossRefGoogle Scholar
  7. [7]
    Gelfand, N.; Mitra, N. J.; Guibas, L. J.; Pottmann, H. Robust global registration. In: Proceedings of the 3rd Eurographics Symposium on Geometry Processing, Article No. 197, 2005.Google Scholar
  8. [8]
    Aiger, D.; Mitra, N. J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. ACM Transactions on Graphics Vol. 27, No. 3, Article No. 85, 2008.CrossRefGoogle Scholar
  9. [9]
    Liu, Y.; Zhou, W.; Yang, Z.; Deng, J.; Liu, L. Globally consistent rigid registration. Graphical Models Vol. 76, No. 5, 542–553, 2014.CrossRefGoogle Scholar
  10. [10]
    Tombari, F.; Salti, S.; Stefano, L. D. Unique signatures of histograms for local surface description. In: Proceedings of the 11th European Conference on Computer Vision: Part III, 356–369, 2010.Google Scholar
  11. [11]
    Guo, Y.; Sohel, F.; Bennamoun, M.; Lu, M.; Wan, J. Rotational projection statistics for 3D local surface description and object recognition. International Journal of Computer Vision Vol. 105, No. 1, 63–86, 2013.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In: Proceedings of IEEE 12th International Conference on Computer Vision Workshops, 689–696, 2009.Google Scholar
  13. [13]
    Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In: Proceedings of the 3rd International Conference on 3-D Digital Imaging and Modeling, 145–152, 2001.CrossRefGoogle Scholar
  14. [14]
    Brown, B. J.; Rusinkiewicz, S. Global non-rigid alignment of 3-D scans. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 21, 2007.CrossRefGoogle Scholar
  15. [15]
    Bouaziz, S.; Tagliasacchi, A.; Pauly, M. Sparse iterative closest point. Computer Graphics Forum Vol. 32, No. 5, 113–123, 2013.CrossRefGoogle Scholar
  16. [16]
    Pottmann, H.; Huang, Q.-X.; Yang, Y.-L.; Hu, S.-M. Geometry and convergence analysis of algorithms for registration of 3D shapes. International Journal of Computer Vision Vol. 67, No. 3, 277–296, 2006.CrossRefGoogle Scholar
  17. [17]
    Cheng, Z.-Q.; Chen, Y.; Martin, R. R.; Lai, Y.-K.; Wang, A. SuperMatching: Feature matching using supersymmetric geometric constraints. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 11, 1885–1894, 2013.CrossRefGoogle Scholar
  18. [18]
    Gal, R.; Cohen-Or, D. Salient geometric features for partial shape matching and similarity. ACM Transactions on Graphics Vol. 25, No. 1, 130–150, 2006.CrossRefGoogle Scholar
  19. [19]
    Chua, C. S.; Jarvis, R. 3D free-form surface registration and object recognition. International Journal of Computer Vision Vol. 17, No. 1, 77–99, 1996.CrossRefGoogle Scholar
  20. [20]
    Huang, Q.-X.; Flöry, S.; Gelfand, N.; Hofer, M.; Pottmann, H. Reassembling fractured objects by geometric matching. ACM Transactions on Graphics Vol. 25, No. 3, 569–578, 2006.CrossRefGoogle Scholar
  21. [21]
    Pottmann, H.; Wallner, J.; Huang, Q.-X.; Yang, Y.-L. Integral invariants for robust geometry processing. Computer Aided Geometric Design Vol. 26, No. 1, 37–60, 2009.Google Scholar
  22. [22]
    Albarelli, A.; Rodolà, E.; Torsello, A. Loosely distinctive features for robust surface alignment. In: Lecture Notes in Computer Science, Vol. 6315. Daniilidis, K.; Maragos, P.; Parogios, N. Eds. Berlin Heidelberg: Springer, 519–532, 2010.Google Scholar
  23. [23]
    Johnson, A. E.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 21, No. 5, 433–449, 1999.CrossRefGoogle Scholar
  24. [24]
    Huber, D. F.; Hebert, M. Fully automatic registration of multiple 3D data sets. Image and Vision Computing Vol. 21, No. 7, 637–650, 2003.CrossRefGoogle Scholar
  25. [25]
    Frome, A.; Huber, D.; Kolluri, R.; Bülow, T.; Malik, J. Recognizing objects in range data using regional point descriptors. In: Lecture Notes in Computer Science, Vol. 3023. Pajdla, T.; Matas, J. Eds. Berlin Heidelberg: Springer, 224–237, 2004.Google Scholar
  26. [26]
    Mian, A. S.; Bennamoun, M.; Owens, R. A. A novel representation and feature matching algorithm for automatic pairwise registration of range images. International Journal of Computer Vision Vol. 66, No. 1, 19–40, 2006.Google Scholar
  27. [27]
    Song, P.; Chen, X. Pairwise surface registration using local voxelizer. In: Proceedings of Pacific Graphics, Stam, J.; Mitra, N. J.; Xu, K. Eds. The Eurographics Association, 1–6, 2015Google Scholar
  28. [28]
    Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, 71–78, 1992.Google Scholar
  29. [29]
    Song, P.; Fu, Z.; Liu, L.; Fu, C.-W. Printing 3D objects with interlocking parts. Computer Aided Geometric Design Vols. 35–36, 137–148, 2015.MathSciNetCrossRefGoogle Scholar
  30. [30]
    Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 27, No. 10, 1615–1630, 2005.CrossRefGoogle Scholar
  31. [31]
    Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In: Proceedings of the 4th Eurographics Symposium on Geometry Processing, 61–70, 2006.Google Scholar
  32. [32]
    Taati, B.; Greenspan, M. Local shape descriptor selection for object recognition in range data. Computer Vision and Image Understanding Vol. 115, No. 5, 681–694, 2011.CrossRefGoogle Scholar
  33. [33]
    Song, P.; Wu, X.; Wang, M. Y. A robust and accurate method for visual hull computation. In: Proceedings of International Conference on Information and Automation, 784–789, 2009.Google Scholar
  34. [34]
    Song, P.; Wu, X.; Wang, M. Y.; Wu, J. Expansionbased depth map estimation for multi-view stereo. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 3213–3218, 2010.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations