Advertisement

Computational Visual Media

, Volume 1, Issue 1, pp 17–26 | Cite as

Poisson disk sampling through disk packing

  • Guanghui Liang
  • Lin LuEmail author
  • Zhonggui Chen
  • Chenglei Yang
Open Access
Research Article

Abstract

Poisson disk sampling is an important problem in computer graphics and has a wide variety of applications in imaging, geometry, rendering, etc. In this paper, we propose a novel Poisson disk sampling algorithm based on disk packing. The key idea uses the observation that a relatively dense disk packing layout naturally satisfies the Poisson disk distribution property that each point is no closer to the others than a specified minimum distance, i.e., the Poisson disk radius. We use this property to propose a relaxation algorithm that achieves a good balance between the random and uniform properties needed for Poisson disk distributions. Our algorithm is easily adapted to image stippling by extending identical disk packing to unequal disks. Experimental results demonstrate the efficacy of our approaches.

Keywords

disk packing image stippling Poisson disk sampling power diagram 

References

  1. [1]
    Pharr, M.; Humphreys, G. Physically Based Rendering: From Theory to Implementation. San Francisco, C A, USA: Morgan Kaufmann Publishers Inc.,2004.Google Scholar
  2. [2]
    Deussen, O.; Hiller, S.; Van Overveld, C.; Strothotte, T. Floating points: A method for computing stipple drawings. Computer Graphics Forum Vol. 19, No. 3, 41–50, 2000.CrossRefGoogle Scholar
  3. [3]
    Secord, A. Weighted Voronoi stippling. In: Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering, 37–43, 2002.Google Scholar
  4. [4]
    Deussen, O.; Hanrahan, P.; Lintermann, B.; Mh, R.; Pharr, M.; Prusinkiewicz, P. Realistic modeling and rendering of plant ecosystems. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, 275–286, 1998.Google Scholar
  5. [5]
    Surazhsky, V.; Alliez, P.; Gotsman, C. Isotropic remeshing of surfaces: A local parameterization approach. In: 12th International Meshing Roundtable, 215–224, 2003.Google Scholar
  6. [6]
    Cook, R. L. Stochastic sampling in computer graphics. ACM Transactions on Graphics Vol. 5, No. 1, 51–72, 1986.CrossRefGoogle Scholar
  7. [7]
    Jones, T. R. Efficient generation of Poisson-disk sampling patterns. Journal of Graphics, G PU, and Game Tools Vol. 11, No. 2, 27–36, 2006.CrossRefGoogle Scholar
  8. [8]
    Dunbar, D.; Humphreys, G. A spatial data structure for fast Poisson-disk sample generation. ACM Transactions on Graphics Vol. 25, No. 3, 503–508, 2006.CrossRefGoogle Scholar
  9. [9]
    White, K. B.; Cline, D.; Egbert, P. K. Poisson disk point sets by hierarchical dart throwing. In: IEEE Symposium on Interactive Ray Tracing, 129–132, 2007.Google Scholar
  10. [10]
    Ebeida, M. S.; Davidson, A. A.; Patney, A.; Knupp, P. M.; Mitchell, S. A.; Owens, J. D. Efficient maximal Poisson-disk sampling. In: ACM SIGGRAPH 2011 papers, Article No. 49, 2011.Google Scholar
  11. [11]
    Yan, D.-M.; Wonka, P. Gap processing for adaptive maximal Poisson-disk sampling. ACM Transactions on Graphics Vol. 32, No. 5, Article No. 148, 2013.CrossRefGoogle Scholar
  12. [12]
    Wei, L.-Y. Parallel Poisson disk sampling. In: ACM SIGGRAPH 2008 papers, Article No. 20, 2008.Google Scholar
  13. [13]
    Xiang, Y.; Xin, S.-Q.; Sun, Q.; He, Y. Parallel and accurate Poisson disk sampling on arbitrary surfaces. In: SIGGRAPH Asia 2011 Sketches, Article No. 18, 2011.Google Scholar
  14. [14]
    Ebeida, M. S.; Mitchell, S. A.; Patney, A.; Davidson, A. A.; Owens, J. D. A simple algorithm for maximal Poisson-disk sampling in high dimensions. Computer Graphics Forum Vol. 31, No. 2, 785–794, 2012.CrossRefGoogle Scholar
  15. [15]
    Gamito, M. N.; Maddock, S. C. Accurate multidimensional Poisson-disk sampling. ACM Transactions on Graphics Vol. 29, No. 1, Article No. 8, 2009.CrossRefGoogle Scholar
  16. [16]
    Dippe, M. A. Z.; Wold, E. H. Antialiasing through stochastic sampling. In: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, 69–78, 1985.Google Scholar
  17. [17]
    Cohen, M. F.; Shade, J.; Hiller, S.; Deussen, O. Wang tiles for image and texture generation. ACM Transactions on Graphics Vol. 22, No. 3, 287–294, 2003.CrossRefGoogle Scholar
  18. [18]
    Ostromoukhov, V.; Donohue, C.; Jodoin, P.-M. Fast hierarchical importance sampling with blue noise properties. ACM Transactions on Graphics Vol. 23, No. 3, 488–495, 2004.CrossRefGoogle Scholar
  19. [19]
    Kopf, J.; Cohen- Or, D.; Deussen, O.; Lischinski, D. Recursive Wang tiles for real-time blue noise. ACM Transactions on Graphics Vol. 25, No. 3, 509–518, 2006.CrossRefGoogle Scholar
  20. [20]
    Ostromoukhov, V. Sampling with polyominoes. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 78, 2007.Google Scholar
  21. [21]
    Lloyd, S. Least squares quantization in pcm. IEEE Transactions on Information Theory Vol. 28, No. 2, 129–137, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    McCool, M.; Fiume, E. Hierarchical Poisson disk sampling distributions. In: Proceedings of the conference on Graphics interface, 94–105, 1992.Google Scholar
  23. [23]
    Balzer, M.; Schlömer, T.; Deussen, O. Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Transactions on Graphics Vol. 28, No. 3, Article No. 86, 2009.CrossRefGoogle Scholar
  24. [24]
    Chen, Z.; Yuan, Z.; Choi, Y.-K.; Liu, L.; Wang, W. Variational blue noise sampling. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 10, 1784–1796, 2012.CrossRefGoogle Scholar
  25. [25]
    Goes, F.; Breeden, K.; Ostromoukhov, V.; Desbrun, M. Blue noise through optimal transport. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 171, 2012.Google Scholar
  26. [26]
    Zhou, Y.; Huang, H.; Wei, L.-Y.; Wang, R. Point sampling with general noise spectrum. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 76, 2012.CrossRefGoogle Scholar
  27. [27]
    Öztireli, A. C.; Gross, M. Analysis and synthesis of point distributions based on pair correlation. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 170, 2012.CrossRefGoogle Scholar
  28. [28]
    Heck, D.; Schlömer, T.; Deussen, O. Blue noise sampling with controlled aliasing. ACM Transactions on Graphics Vol. 32, No. 3, Article No. 25, 2013.CrossRefGoogle Scholar
  29. [29]
    Wachtel, F.; Pilleboue, A.; Coeurjolly, D.; Breeden, K.; Singh, G.; Cathelin, G.; de Goes, F.; Desbrun, M.; Ostromoukhov, V. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 56, 2014.CrossRefGoogle Scholar
  30. [30]
    Ebeida, M. S.; Awad, M. A.; Ge, X.; Mahmoud, A. H.; Mitchell, S. A.; Knupp, P. M.; Wei, L.-Y. Improving spatial coverage while preserving the blue noise of point sets. Computer-Aided Design Vol. 46, 25–36, 2014.CrossRefGoogle Scholar
  31. [31]
    Chen, J.; Ge, X.; Wei, L.-Y.; Wang, B.; Wang, Y.; Wang, H.; Fei, Y.; Qian, K.-L.; Yong, J.-H. Wang, W. Bilateral blue noise sampling. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 216, 2013.Google Scholar
  32. [32]
    Kepler, J. The Six-Cornered Snowflake. Oxford, UK: Clarendon Press, 1966.Google Scholar
  33. [33]
    Lubachevsky, B. D.; Graham, R. L. Curved hexagonal packings of equal disks in a circle. Discrete & Computational Geometry Vol. 18, No. 2, 179–194, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Szabó, P. G.; Markót, M. Cs.; Csendes, T.; Specht, E.; Casado, L. G.; Garcia, I. New Approaches to Circle Packing in a Square: With Program Codes. New York, N Y, USA: Springer-Verlag, 2007.Google Scholar
  35. [35]
    Graham, R. L.; Lubachevsky, B. D. Dense packings of equal disks in an equilateral triangle: From 22 to 34 and beyond. The Electronic Journal of Combinatorics Vol. 2, No. 1, A1, 1995.MathSciNetGoogle Scholar
  36. [36]
    Birgin, E. G.; Sobral, F. N. C. Minimizing the object dimensions in circle and sphere packing problems. Computers and Operations Research Vol. 35, No. 7, 2357–2375, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Addis, B.; Locatelli, M.; Schoen, F. Efficiently packing unequal disks in a circle. Operations Research Letters Vol. 36, No. 1, 37–42, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    Pintér, J. D.; Kampas, F. J. MathOptimizer professional: Key features and illustrative applications. In: Nonconvex Optimization and Its Applications, Vol. 84 Global Optimization. Liberti, L.; Maculan, N. Eds. New York, N Y, USA: Springer-Verlag, 263–279, 2006.Google Scholar
  39. [39]
    Huang, W. Q.; Li, Y.; Akeb, H.; Li, C. M. Greedy algorithms for packing unequal circles into a rectangular container. Journal of the Operational Research Society Vol. 56, No. 5, 539–548, 2005.CrossRefzbMATHGoogle Scholar
  40. [40]
    Lu, Z.; Huang, W. PERM for solving circle packing problem. Computers & Operations Research Vol. 35, No. 5, 1742–1755, 2008.CrossRefGoogle Scholar
  41. [41]
    Wang, H.; Huang, W.; Zhang, Q.; Xu, D. An improved algorithm for the packing of unequal circles within a larger containing circle. European Journal of Operational Research Vol. 141, No. 2, 440–453, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    Lu, L.; Choi, Y.-K.; Sun, F.; Wang, W. Variational circle packing based on power diagram. Technical report. The University of Hong Kong, 2011. Available at http://vr.sdu.edu.cn/~lulin/CP TechReport.pdf.Google Scholar
  43. [43]
    Aurenhammer, F. Power diagrams: Properties, algorithms and applications. SIAM Journal on Computing Vol. 16, No. 1, 78–96, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    Liu, Y.; Wang, W.; Levy, B.; Sun, F.; Yan, D.-M.; Lu, L.; Yang, C. On centroidal voronoi tessellation—energy smoothness and fast computation. ACM Transactions on Graphics Vol. 28, No. 4, Article No. 101, 2009.CrossRefGoogle Scholar
  45. [45]
    Lagae, A.; Dutré, P. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum Vol. 27, No. 1, 114–129, 2008.CrossRefGoogle Scholar
  46. [46]
    Fabri, A.; Pion, S. CGAL: The computational geometry algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 538–539, 2009.Google Scholar
  47. [47]
    Schmaltz, C.; Gwosdek, P.; Bruhn, A.; Weickert, J. Electrostatic halftoning. Computer Graphics Forum Vol. 29, No. 8, 2313–2327, 2010.CrossRefGoogle Scholar
  48. [48]
    Fattal, R. Blue-noise point sampling using kernel density model. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 48, 2011.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Guanghui Liang
    • 1
  • Lin Lu
    • 1
    Email author
  • Zhonggui Chen
    • 2
  • Chenglei Yang
    • 1
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina
  2. 2.Department of Computer ScienceXiamen UniversityXiamenChina

Personalised recommendations