Competition graphs with complex intuitionistic fuzzy information

Abstract

A complex intuitionistic fuzzy set (CIFS) has an ability to represent the problems with intuitionistic uncertainty and periodicity, simultaneously. In this paper, we present a new framework for handling complex intuitionistic fuzzy information by combining the CIFSs with competition graphs. We first introduce the concept of complex intuitionistic fuzzy competition graphs along with its two worthwhile extensions, namely, complex intuitionistic fuzzy k-competition and complex intuitionistic fuzzy p-competition graphs. Further, we present complex intuitionistic fuzzy neighborhood graphs and m-step complex intuitionistic fuzzy competition graphs with some of their remarkable results. We also describe an application of complex intuitionistic fuzzy competition graphs along with an algorithm which finds the competition among the applicants competing for the particular jobs possessing the two-dimensional information. Moreover, we provide a comparison analysis of proposed competition graphs with existing graphs to find the validity and superiority of proposed competition graphs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Akram M, Khan A (2020) Complex Pythagorean Dombi fuzzy graphs for decision making. Granul Comput. https://doi.org/10.1007/s41066-020-00223-5

    Article  Google Scholar 

  2. Akram M, Naz S (2019) A novel decision-making approach under complex Pythagorean fuzzy environment. Math Comput Appl 24(3):73

    MathSciNet  Google Scholar 

  3. Akram M, Sarwar M (2018) Novel applications of m-polar fuzzy competition graphs in decision support system. Neural Comput Appl 30(10):3145–3165

    Article  Google Scholar 

  4. Akram M, Bashir A, Samanta S (2020a) Complex Pythagorean fuzzy planar graphs. Int J Appl Comput Math 6:58. https://doi.org/10.1007/s40819-020-00817-2

    MathSciNet  MATH  Article  Google Scholar 

  5. Akram M, Dudek WA, Habib A, Al-Kenani AN (2020b) AL Imperfect competition models in economic market structure with $q$-rung picture fuzzy information. J Intell Fuzzy Syst 38(4):5107–5126

    Article  Google Scholar 

  6. Akram M, Sattar A, Karaaslan F, Samanta S (2020c) Extension of competition graphs under complex fuzzy environment. Complex Intell Syst. https://doi.org/10.1007/s40747-020-00217-5

    Article  Google Scholar 

  7. Alkouri AM, Salleh AR (2012) Complex intuitionistic fuzzy sets. AIP Conf Proc 1482(1):464–470

    Article  Google Scholar 

  8. Alkouri AM, Salleh AR (2013a) Some operations on complex Atanassov’s intuitionistic fuzzy sets. AIP Conf Proc 157(1):987–993

    MATH  Article  Google Scholar 

  9. Alkouri AM, Salleh AR (2013b) Complex Atanassov’s intuitionistic fuzzy relation. In: Abstract and applied analysis 2013:18, Article ID 287382

  10. Atanassov KT (1999) Intuitionistic fuzzy sets. Studies in Fuzziness and Soft Computing pp. 1–324

  11. Brigham RC, McMorris FR, Vitray RP (1995) Tolerance competition graphs. Linear Algebra Appl 217:41–52

    MathSciNet  MATH  Article  Google Scholar 

  12. Chen SM, Cheng SH, Lan TC (2016) Multi-criteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values. Inf Sci 367:279–295

    Article  Google Scholar 

  13. Cho HH, Kim SR, Yunsun N (2000) The $m$-step competition graph of a digraph. Discrete Appl Math 105(1–3):115–127

    MathSciNet  MATH  Article  Google Scholar 

  14. Cohen JE, Stephens DW (1978) Food webs and niche space. Princeton University Press, Princeton, p 11

    Google Scholar 

  15. Euler L (1736) Solutio problems ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 8:128–140

    Google Scholar 

  16. Habib A, Akram M, Farooq A (2019) $q$-rung orthopair fuzzy competition graphs with application in the soil ecosystem. Mathematics 7(1):91

    MathSciNet  Article  Google Scholar 

  17. Isaak G, Kim SR, McKees TA, McMorris FR, Roberts FS (1992) 2-Competition graphs. SIAM J Discrete Math 5(4):524–538

    MathSciNet  MATH  Article  Google Scholar 

  18. Kim SR, McKee TA, McMorris FR, Roberts FS (1995) p-Competition graphs. Linear Algebra Appl 217:167–178

    MathSciNet  MATH  Article  Google Scholar 

  19. Lundgren JR (1989) Food webs, competition graphs, competition-common enemy graphs and niche graphs. In: Applications of combinatorics and graph theory to the biological and social sciences. pp 221–243

  20. Luqman A, Akram M, Al-Kenani AN, Alcantud JCR (2019) A study on hypergraph representations of complex fuzzy information. Symmetry 11(11):1381

    Article  Google Scholar 

  21. Ramot D, Milo R, Friedman M, Kandel A (2002) Complex fuzzy sets. IEEE Trans Fuzzy Syst 10(2):171–186

    Article  Google Scholar 

  22. Rosenfeld A (1975) Fuzzy graphs. In: Fuzzy sets and their applications to cognitive and decision processes. Academic Press, pp 77–95

  23. Sahoo S, Pal M (2016) Intuitionistic fuzzy competition graphs. J Appl Math Comput 52(1–2):37–57

    MathSciNet  MATH  Article  Google Scholar 

  24. Samanta S, Pal M (2013) Fuzzy $k$-competition graphs and p-competition fuzzy graphs. Fuzzy Inf Eng 5(2):191–204

    MathSciNet  MATH  Article  Google Scholar 

  25. Samanta S, Akram M, Pal M (2015) $m$-Step fuzzy competition graphs. J Appl Math Comput 47(1–2):461–472

    MathSciNet  MATH  Article  Google Scholar 

  26. Scott DD (1987) The competition-common enemy graph of a digraph. Discrete Appl Math 17(3):269–280

    MathSciNet  MATH  Article  Google Scholar 

  27. Siddique S, Ahmad U, Akram M (2020a) A study on generalized graphs representations of complex neutrosophic information. J Math Comput Appl. https://doi.org/10.1007/s12190-020-01400-0

    Article  Google Scholar 

  28. Siddique S, Ahmad U, Salam W, Akram M, Smarandache F (2020b) Representation of competitions by complex neutrosophic information. J Intell Fuzzy Syst 39(5):7881–7897

    Article  Google Scholar 

  29. Sonntag M, Teichert HM (2004) Competition hypergraphs. Discrete Appl Math 143(1–3):324–329

    MathSciNet  MATH  Article  Google Scholar 

  30. Thirunavukarasu P, Suresh R, Viswanathan KK (2016) Energy of a complex fuzzy graph. Int J Math Sci Eng Appl 10:243–248

    Google Scholar 

  31. Yaqoob N, Gulistan M, Kadry S, Wahab H (2019) Complex intuitionistic fuzzy graphs with application in cellular network provider companies. Mathematics 7(1):35

    Article  Google Scholar 

  32. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MATH  Article  Google Scholar 

  33. Zeng S, Chen SM, Kuo LW (2019) Multi-attribute decision making based on novel score function of intuitionistic fuzzy values and modified VIKOR method. Inf Sci 488:76–92

    Article  Google Scholar 

  34. Zhang G, Dillon TS, Cai KY, Ma J, Lu J (2009) Operation properties and d-equalities of complex fuzzy sets. Int J Approx Reason 50(8):1227–1249

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akram, M., Sattar, A. & Saeid, A.B. Competition graphs with complex intuitionistic fuzzy information. Granul. Comput. (2021). https://doi.org/10.1007/s41066-020-00250-2

Download citation

Keywords

  • Complex intuitionistic fuzzy competition graphs
  • k-Competition
  • m-Step competition
  • p-Competition