A deep learning approach for financial market prediction: utilization of Google trends and keywords

Abstract

This study used the amount of Internet search on Google Trend and analyzed the correlation between the search volume on Google Trend and Taiwan Weighted Stock Index. The keyword search volume provided by Google Trend was used in the correlation test and the unit root test. Then, the keywords obtained were analyzed in two experiments—first, machine learning, and second, search trend. After empirical analysis, it was found that neural network in experiment one performed better than support vector machine and decision trees. Therefore, neural network was selected to compare with the search trend in the second experiment. Through comparative analysis of calculation of return values, it was found that the return value in search trend is higher than that of the neural network. Therefore, this paper revealed that there was a correlation between using company names of Taiwan 50 Index as search keywords and the rise and fall of TAIEX index.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bijl L, Kringhaug G, Molnár P, Sandvik E (2016) Google searches and stock returns. Int Rev Financ Anal 45:150–156

    Article  Google Scholar 

  2. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, Boca Raton. https://doi.org/10.1016/j.irfa.2016.03.015

    Google Scholar 

  3. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  4. Chatzis SP, Siakoulis V, Petropoulos A, Stavroulakis E, Vlachogiannakis N (2018) Forecasting stock market crisis events using deep and statistical machine learning techniques. Expert Syst Appl 112:353–371. https://doi.org/10.1016/j.eswa.2018.06.032

    Article  Google Scholar 

  5. Chen SM, Chang YC (2011) Weighted fuzzy rule interpolation based on GA-based weight-learning techniques. IEEE Trans Fuzzy Syst 19(4):729–744. https://doi.org/10.1109/TFUZZ.2011.2142314

    Article  Google Scholar 

  6. Chen MY, Chen BT (2015a) A hybrid fuzzy time series model based on granular computing for stock price forecasting. Inf Sci 294:227–241. https://doi.org/10.1016/j.ins.2014.09.038

    MathSciNet  Article  Google Scholar 

  7. Chen SM, Chen SW (2015b) Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. IEEE Trans Cybern 45(3):405–417. https://doi.org/10.1109/TCYB.2014.2326888

    Article  Google Scholar 

  8. Chen MY, Chen TH (2019) Modeling public mood and emotion: blog and news sentiment and socio-economic phenomena. Future Gener Comput Syst 96:692–699. https://doi.org/10.1016/j.future.2017.10.028

    Article  Google Scholar 

  9. Chen SM, Huang CM (2003) Generating weighted fuzzy rules from relational database systems for estimating null values using genetic algorithms. IEEE Trans Fuzzy Syst 11(4):495–506. https://doi.org/10.1109/TFUZZ.2003.814837

    Article  Google Scholar 

  10. Chen SM, Jian WS (2017) Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups, similarity measures and PSO techniques. Inf Sci 391–392:65–79. https://doi.org/10.1016/j.ins.2016.11.004

    Article  Google Scholar 

  11. Chen SM, Wang JY (1995) Document retrieval using knowledge-based fuzzy information retrieval techniques. IEEE Trans Syst Man Cybern 25(5):793–803. https://doi.org/10.1109/21.376492

    Article  Google Scholar 

  12. Chen SM, Chu HP, Sheu TW (2012) TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors. IEEE Trans Syst Man Cybern Part A Syst Humans 42(6):1485–1495. https://doi.org/10.1109/TSMCA.2012.2190399

    Article  Google Scholar 

  13. Chen MY, Fan MH, Chen YL, Wei HM (2013a) Design of experiments on neural network’s parameters optimization for time series forecasting in stock markets. Neural Netw World 23(4):369–393. https://doi.org/10.14311/NNW.2013.23.023

    Article  Google Scholar 

  14. Chen SM, Manalu GM, Pan JS, Liu HC (2013b) Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques. IEEE Trans Cybern 43(3):1102–1117. https://doi.org/10.1109/TSMCB.2012.2223815

    Article  Google Scholar 

  15. Chen MY, Liao CH, Hsieh RP (2019) Modeling public mood and emotion: Stock market trend prediction with anticipatory computing approach. Human Behav, Comput. https://doi.org/10.1016/j.chb.2019.03.021

    Google Scholar 

  16. Cheng SH, Chen SM, Jian WS (2016) Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Inf Sci 327:272–287. https://doi.org/10.1016/j.ins.2015.08.024

    MathSciNet  Article  MATH  Google Scholar 

  17. Chong E, Han C, Park FC (2017) Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies. Expert Syst Appl 83(15):187–205. https://doi.org/10.1016/j.eswa.2017.04.030

    Article  Google Scholar 

  18. Chumnumpan P, Shi X (2019) Understanding new products’ market performance using Google Trends. Aust Market J 5:6. https://doi.org/10.1016/j.ausmj.2019.01.001

    Article  Google Scholar 

  19. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1023/A:1022627411411

    Article  MATH  Google Scholar 

  20. Dewan V, Sur H (2018) Using Google trends to assess for seasonal variation in knee injuries. J Arthrosc Joint Surg 5(3):175–178. https://doi.org/10.1016/j.jajs.2018.02.002

    Article  Google Scholar 

  21. Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366a): 427–431. https://www.jstor.org/stable/2286348

  22. Elliott RN (1938) The Wave Principle. Republished (1980, 1994). In: Prechter RR (ed), R.N. Elliott's Masterworks. New Classics Library, Gainesville, GA, p 144

    Google Scholar 

  23. Fan MH, Liao EC, Chen MY (2014) A TAIEX forecasting model based on changes of keyword search volume on Google Trends. In: 2014 IEEE International Symposium on Independent Computing (IEEE ISIC 2014), Orlando, FL, USA, December 9-12, 96-99

  24. Granger CW, Newbold P (1974) Spurious regressions in econometrics. J Econ 2(2):111–120. https://doi.org/10.1016/0304-4076(74)90034-7

    Article  MATH  Google Scholar 

  25. Grodinsky J (1953) Investments. Ronald Press Company, New York

    Google Scholar 

  26. Hu H, Tang L, Zhang S, Wang H (2018) Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing 285:188–195. https://doi.org/10.1016/j.neucom.2018.01.038

    Article  Google Scholar 

  27. Joseph K, Babajide Wintoki M, Zhang Z (2011) Forecasting abnormal stock returns and trading volume using investor sentiment: evidence from online search. Int J Forecast 27(4):1116–1127. https://doi.org/10.1016/j.ijforecast.2010.11.001

    Article  Google Scholar 

  28. Lee LW, Chen SM (2008) Fuzzy risk analysis based on fuzzy numbers with different shapes and different deviations. Expert Syst Appl 34(4):2763–2771. https://doi.org/10.1016/j.eswa.2007.05.009

    Article  Google Scholar 

  29. Long W, Lu Z, Cui L (2019) Deep learning-based feature engineering for stock price movement prediction. Knowl Based Syst 164:163–173. https://doi.org/10.1016/j.knosys.2018.10.034

    Article  Google Scholar 

  30. Nelson CR, Plosser CR (1982) Trends and random walks in macroeconomic time series: some evidence and implications. J Monet Econ 10(2):139–162. https://doi.org/10.1016/0304-3932(82)90012-5

    Article  Google Scholar 

  31. Phillips PC, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75(2): 335-346. https://www.jstor.org/stable/2336182

  32. Preis T, Moat HS, Stanley HE (2013) Quantifying trading behavior in financial markets using Google Trends Scientific reports 3

  33. Quinlan JR (1993) C4. 5: programs for machine learning (Vol. 1). Morgan kaufmann

  34. Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994, October). GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186). ACM

  35. Robert R (1932) The Dow theory: an explanation of its development and an attempt to define its usefulness as an aid in speculation. Barron's, New York

    Google Scholar 

  36. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning Internal Representations by Error Propagation, Parallel Distributed Processing, Explorations in the Microstructure of Cognition, ed. DE Rumelhart and J. McClelland. Vol. 1

  37. Said SE, Dickey DA (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3): 599-607. https://www.jstor.org/stable/2336570

  38. Smith GP (2012) Google internet search activity and volatility prediction in the market for foreign currency. Finance Res Lett 9(2):103–110. https://doi.org/10.1016/j.frl.2012.03.003

    Article  Google Scholar 

  39. Song Q, Chissom BS (1993) Forecasting enrollments with fuzzy time series—part I. Fuzzy Sets Syst 54(1):1–9. https://doi.org/10.1016/0165-0114(93)90355-L

    Article  Google Scholar 

  40. Song Q, Chissom BS (1994) Forecasting enrollments with fuzzy time series–Part II. Fuzzy Sets Syst 62(1):1–8. https://doi.org/10.1016/0165-0114(94)90067-1

    Article  Google Scholar 

  41. Takeda F, Wakao T (2014) Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance J 27:1–18. https://doi.org/10.1016/j.pacfin.2014.01.003

    Article  Google Scholar 

  42. Yu L, Zhao Y, Tang L, Yang Z (2019) Online big data-driven oil consumption forecasting with Google trends. Int J Forecast 35(1):213–223. https://doi.org/10.1016/j.ijforecast.2017.11.005

    Article  Google Scholar 

  43. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  44. Zeng S, Chen SM, Teng MO (2019) Fuzzy forecasting based on linear combinations of independent variables, subtractive clustering algorithm and artificial bee colony algorithm. Inf Sci 484:350–366. https://doi.org/10.1016/j.ins.2019.01.071

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mu-Yen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, MH., Chen, MY. & Liao, EC. A deep learning approach for financial market prediction: utilization of Google trends and keywords. Granul. Comput. 6, 207–216 (2021). https://doi.org/10.1007/s41066-019-00181-7

Download citation

Keywords

  • Google trends
  • TAIEX
  • Search volume
  • Artificial neural network