Complex multi-fuzzy context analysis at different granulation

Abstract

The m-p olar fuzzy graph representation of concept lattice gives a way to deal with its periodic changes at a given phase of time. One of the suitable examples is opinion of reviewers towards acceptance and rejection of a manuscript used to change several times for a given journal. Dealing with these types of m-polar complex fuzzy attributes is a crucial task for the data analytic researchers. The first problem arises with its precise mathematical representation and second with its algebraic processing for knowledge discovery tasks. In this regard, the calculus of complex multi-fuzzy set and its granulation is introduced for handling complex multi-fuzzy context and its graphical traversal. The information obtained from the proposed methods is also analyzed with recently introduced mathematical model on m-polar fuzzy set as well as complex fuzzy concept lattice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Air_quality_index.

  2. 2.

    https://en.wikipedia.org/wiki/Soil.

  3. 3.

    https://www.topuniversities.com/university-rankings/world-university-rankings/2019.

  4. 4.

    https://en.wikipedia.org/wiki/Bushfires_in_Australia.

  5. 5.

    https://en.wikipedia.org/wiki/Traffic_congestion.

  6. 6.

    https://www.nature.com/articles/d41586-018-06185-8.

References

  1. Akram M, Younas HR (2017) Certain types of irregular \(m\)-polar fuzzy graphs. J Appl Math Comput 53(1–2):365–382

    MathSciNet  MATH  Article  Google Scholar 

  2. Ali M, Smarandache F (2017) Complex neutrosophic set. Neural Comput Appl 28(7):1817–1834

    Article  Google Scholar 

  3. Al-Qudah Y, Nasruddin H (2017) Operations on complex multi-fuzzy sets. J Intell Fuzzy Syst 33(3):1527–1540

    MATH  Article  Google Scholar 

  4. Al-Quran A, Nasruddin H (2018a) The complex neutrosophic soft expert set and its application in decision making. J Intell Fuzzy Syst 34(1):569–582

    Article  Google Scholar 

  5. Al-Quran A, Nasruddin H (2018b) The complex neutrosophic soft expert relation and its multiple attribute decision-making method. Entropy 20(2):101. https://doi.org/10.3390/e20020101

    Article  Google Scholar 

  6. Bravo G, Farjam M, Grimaldo Moreno F, Birukou A, Squazzoni F (2018) Hidden connections: network effects on editorial decisions in four computer science journals. J Informetr 12(1):101–112

    Article  Google Scholar 

  7. Broumi S, Deli I, Smarandache F (2015) N-valued interval neutrosophic sets and their application in medical diagnosis. Crit Rev Cent Math Uncertain Creighton Univ U S A 10:46–69

    Google Scholar 

  8. Broumi S, Assia B, Smarandache F, Talea M, Ali M, Selvachandran G (2017) Complex neutrosophic soft set. In: 2017 FUZZ-IEEE conference on fuzzy systems, Naples, Italy, 9–12 July 2017

  9. Broumi S, Bakali A, Talea M, Smarandache F, Singh PK, Ulucay V, Khan M (2019) Bipolar complex neutrosophic sets and its application in decision making problem. In: Irem Otay et al. 2019, Fuzzy multi-criteria decision making using neutrosophic sets. Stud Fuzziness Soft Comput 369: 677–702

  10. Burusco A, Fuentes-Gonzalez R (1994) The study of the L- fuzzy concept lattice. Matheware Soft Comput 1(3):209–218

    MathSciNet  MATH  Google Scholar 

  11. Cai M, Li Q, Lang G (2017) Shadowed sets of dynamic fuzzy sets. Granul Comput 2(2):85–94

    Article  Google Scholar 

  12. Chen SM, Chang YC (2016) Weighted fuzzy rule interpolation based on GA-based weight-learning techniques. IEEE Trans Fuzzy Syst 19(4):729–744

    Article  Google Scholar 

  13. Chen SM, Huang CM (2003) Generating weighted fuzzy rules from relational database systems for estimating null values using genetic algorithms. IEEE Trans Fuzzy Syst 11(4):495–506

    Article  Google Scholar 

  14. Chen SM, Tanuwijaya K (2011) Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques. Expert Syst Appl 38(12):15425–15437

    Article  Google Scholar 

  15. Chen SM, Wang JY (1995) Document retrieval using knowledge-based fuzzy information retrieval techniques. IEEE Trans Syst Man Cybern 25(5):793–803

    Article  Google Scholar 

  16. Chen J, Li S, Ma S, Wang X (2014) m-polar fuzzy sets: an extension of bipolar fuzzy sets. Sci World J. https://doi.org/10.1155/2014/416530 (Article ID 416530)

    Article  Google Scholar 

  17. Cheng SH, Chen SM, Jian WS (2016) Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Inf Sci 327:272–287

    MathSciNet  MATH  Article  Google Scholar 

  18. Dick S, Yager RR, Yazdanbakhsh O (2016) On Pythagorean and complex fuzzy set operations. IEEE Trans Fuzzy Syst 24(2016):1009–1021

    Article  Google Scholar 

  19. Djouadi Y, Dubois D, Prade H (2011) Graduality, uncertainty and typicality in formal concept analysis. In: Cornelis C, Deschrijver G, Nachtegael M, Schockaert S (eds) 35 years of fuzzy sets theory. Springer, Berlin, pp 127–147

    Google Scholar 

  20. El-Omar EL (2014) How to publish a scientific manuscript in a high-impact journal. Adv Dig Med 1:105–109

    Article  Google Scholar 

  21. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundation. Springer, Berlin

    Google Scholar 

  22. Goguen JA (1967) L-fuzzy sets. J Math Anal Appl 18:145–174

    MathSciNet  MATH  Article  Google Scholar 

  23. Kandasamy WBV, Kandasamy I, Florentin S (2017) Complex valued graphs for soft computing. EuropaNova ASBL Clos du Parnasse, 3E 1000, Bruxelles Belgium

  24. Kroonenberg PM (2008) Applied multiway data analysis. Wiley, Hoboken

    Google Scholar 

  25. Kumar CA, Singh PK (2014) Knowledge representation using formal concept analysis: a study on concept generation. In: Tripathy BK, Acharjya DP (eds) Global trends in knowledge representation and computational intelligence. IGI Global Publishers, Pennsylvania, pp 306–336

    Google Scholar 

  26. Lee LW, Chen SM (2008) Fuzzy risk analysis based on fuzzy numbers with different shapes and different deviations. Expert Syst Appl 34(4):2763–2771

    Article  Google Scholar 

  27. Li JH, Huang C, Qi J, Qian Y, Liu W (2017) Three-way cognitive concept learning via multi-granularity. Inf Sci 378:244–263

    MATH  Article  Google Scholar 

  28. Lindig C (2002) Fast concept analysis. In: Ganter B, Mineau GW (eds) ICCS 2000, LNCS, vol. 1867. Springer, Heidelberg. p 152161

  29. Loia V, Orciuoli F, Pedrycz W (2018) Towards a granular computing approach based on formal concept analysis for discovering the periodicities in data. Knowl Based Syst 146:1–11

    Article  Google Scholar 

  30. Mesiarová-Zemanková A, Ahmad K (2014) Extended multi-polarity and multi-polar-valued fuzzy sets. Fuzzy Sets Syst 234:61–78

    MathSciNet  MATH  Article  Google Scholar 

  31. Nguyen TH, Kandel A, Kreinovich V (2000) Complex fuzzy sets: towards new foundations. Ninth IEEE Int Conf Fuzzy Syst 2:1045–1048

    Google Scholar 

  32. Qamar MA, Nasruddin H (2018) Q-neutrosophic soft relation and its application in decision making. Entropy 20:172. https://doi.org/10.3390/e20030172

    Article  Google Scholar 

  33. Ramot D, Friedman M, Langholz G, Kandel A (2003) Complex fuzzy logic. IEEE Trans Fuzzy Syst 11(4):450–461

    Article  Google Scholar 

  34. Ramot D, Milo R, Friedman M, Kandel A (2005) Complex fuzzy sets. IEEE Trans Fuzzy Syst 10(2):171–186

    Article  Google Scholar 

  35. Sarwar M, Akram M (2017) Novel application of \(m\)-polar fuzzy concept lattice. Math Nat Comput 13(3):261–287

    MathSciNet  MATH  Article  Google Scholar 

  36. Sebastian S, Ramakrishnan TV (2011) Multi-fuzzy sets: an extension of fuzzy sets. Fuzzy Inf Eng 3(1):35–43

    MathSciNet  MATH  Article  Google Scholar 

  37. Selvachandran G, Singh PK (2018) Interval-valued complex fuzzy soft set and its application. Int J Uncertain Quantif 8(2):101–117

    MathSciNet  Article  Google Scholar 

  38. Selvachandran G, Maji PK, Abed IE, Salleh AR (2016) Relations between complex vague soft sets. Appl Soft Comput 47:438–448

    MATH  Article  Google Scholar 

  39. Singh PK (2017a) Complex vague set based concept lattice. Chaos Solitons Fractals 96:145–153

    MATH  Article  Google Scholar 

  40. Singh PK (2017b) Three-way fuzzy concept lattice representation using neutrosophic set. Int J Mach Learn Cybern 8(1):69–79

    Article  Google Scholar 

  41. Singh PK (2018a) Interval-valued neutrosophic graph representation of concept lattice and its (\(\alpha, \beta, \gamma \))-decomposition. Arab J Sci Eng 43(2):723–740

    Article  Google Scholar 

  42. Singh PK (2018b) \(m\)-polar fuzzy graph representation of concept lattice. Eng Appl Artif Intell 67:52–62

    Article  Google Scholar 

  43. Singh PK (2018c) Concept lattice visualization of data with \(m\)-polar fuzzy attribute. Granul Comput 3(2):123–137

    Article  Google Scholar 

  44. Singh PK (2018d) Complex neutrosophic concept lattice and its applications to Air quality analysis. Chaos Solitons Fractals 109:206–213

    Article  Google Scholar 

  45. Singh PK (2018e) Three-way n-valued neutrosophic concept lattice at different granulation. Intell J Mach Learn Cybern 9(11):1839–1855

    Article  Google Scholar 

  46. Singh PK (2019a) Multi-granular based n-valued neutrosophic contexts analysis. Granul Comput Springer. https://doi.org/10.1007/s41066-019-00160-y

    Article  Google Scholar 

  47. Singh PK (2019b) Complex vague contexts analysis using Cartesian products and granulation. Granul Comput Springer. https://doi.org/10.1007/s41066-018-0136-z

    Article  Google Scholar 

  48. Singh PK, Gani A (2015) Fuzzy concept lattice reduction using Shannon entropy and Huffman coding. J Appl Non Class logic 25(2):101–119

    MathSciNet  MATH  Article  Google Scholar 

  49. Singh PK, Kumar CA (2012) A method for decomposition of fuzzy formal context. Proc Eng 38:1852–1857

    Article  Google Scholar 

  50. Singh PK, Kumar CA (2014) Bipolar fuzzy graph representation of concept lattice. Inf Sci 288(2014):437–448

    MathSciNet  MATH  Article  Google Scholar 

  51. Singh PK, Selvachandran G, Kumar CA (2019) Interval-valued complex fuzzy concept lattice and its granular decomposition. In: Kalita J, Balas V, Borah S, Pradhan R (eds) Recent developments in machine learning and data analytics. Adv Intell Syst Comput 740:275–283

  52. Smarandache F (2013) \(n\)-valued refined neutrosophic logic and its applications to physics. Progr Phys 4:143–146

    Google Scholar 

  53. Tamir DE, Rishe ND, Kandel A (2015) Complex fuzzy sets and complex fuzzy logic: an overview of theory and applications. In: Tamir DE, Rishe ND, Kandel A (eds) Fifty years of fuzzy logic and its applications. Springer, Cham, pp 661–681

    Google Scholar 

  54. Ulazeez AbD, Alkouri M, Salleh AR (2014) Complex fuzzy soft multisets. The 2014 UKM FST postgraduate colloquium. In: Proceedings of 2014 AIP conference, vol 1614. pp 955–961

  55. Ward M, Dilworth RP (1939) Residuated lattices. Trans Am Math Soc 45:335–354

    MathSciNet  MATH  Article  Google Scholar 

  56. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (eds) Ordered sets. NATO Advanced Study Institutes Series 83:445–470

  57. William-West TO, Singh D (2018) Information granulation for rough fuzzy hypergraphs. Granul Comput 3(1):75–92

    Article  Google Scholar 

  58. Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowledge reduction in formal context. IEEE Trans Knowl Data Eng 21(10):1461–1474

    Article  Google Scholar 

  59. Yazdanbakhsh O, Dick S (2018) A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst 338:1–22

    MathSciNet  MATH  Article  Google Scholar 

  60. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MATH  Article  Google Scholar 

  61. Zhang G, Dillon TS, Cai KY, Ma J, Lu J (2009) Operation properties and \(\delta \)-equalities of complex fuzzy sets. Int J Approx Reason 50:1227–1249

    MathSciNet  MATH  Article  Google Scholar 

  62. Zhao ZQ, Ma SQ (2016) Complex fuzzy matrix and its convergence problem research. In: Cao et al. (eds) Fuzzy systems & operations research and management. Springer International, Cham, Switzerland 2016, pp. 157–162

  63. Zhi H, Li JH (2018) Granule description based on positive and negative attributes. Granul Comput Springer. https://doi.org/10.1007/s41066-018-0113-6

    Article  Google Scholar 

Download references

Acknowledgements

Author thanks each of the reviewers and editor’s for their valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prem Kumar Singh.

Ethics declarations

Conflict of interest

Author declares that there is no conflict of interest for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K. Complex multi-fuzzy context analysis at different granulation. Granul. Comput. 6, 191–206 (2021). https://doi.org/10.1007/s41066-019-00180-8

Download citation

Keywords

  • Formal Complex data analytics
  • Complex fuzzy set
  • Complex multi-fuzzy set
  • Concept lattice
  • m-Polar fuzzy set
  • m-Polar fuzzy graph
  • Granulation