Algebraic approaches to granular computing

Abstract

We study the granular structures in granular computing from algebraic views. We model a granular structure based on an algebra that consists of a universe and a closure operator. Based on this formulation, we define the basic granules in a granular structure through the notion of subalgebras. Using formal concept analysis and rough set analysis as two examples, we demonstrate that the proposed formulation can unify a number of current studies on the related areas of granular computing. Moreover, by modelling the granular structures in rough sets with algebraic approaches, we generalize the notion of approximations in rough sets into a general granular structure. The algebraic approaches provide a mathematical formulation of granular structures, which may assist us in the construction and interpretation of granules and granular structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Birkhoff G (1979) Lattice theory, 3rd edn. American Mathematical Society, Providence

    Google Scholar 

  2. Chen ZH, Lin TY, Xie G (2013) Knowledge approximations in binary relation: granular computing approach. Int J Intell Syst 28:843–864. https://doi.org/10.1002/int.21607

    Article  Google Scholar 

  3. Chen LS, Wang JY, Li L (2016) The models of granular system and algebraic quotient space in granular computing. Chin J Electron 25:1109–1113. https://doi.org/10.1049/cje.2016.08.001

    Article  Google Scholar 

  4. Chibbaro S, Rondoni L, Vulpiani A (2014) Reductionism, emergence and levels of reality: the importance of being borderline. Springer, Switzerland

    Google Scholar 

  5. Fan J, Xie W, Pei J (1999) Subsethood measure: new definitions. Fuzzy Sets Syst 106:201–209. https://doi.org/10.1016/S0165-0114(97)00275-3

    MathSciNet  Article  MATH  Google Scholar 

  6. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, Berlin

    Google Scholar 

  7. Grätzer G (1979) Universal algebra, 2nd edn. Springer, New York

    Google Scholar 

  8. Hońko P (2017) Properties of a granular computing framework for mining relational data. Int J Intell Syst 32:227–248. https://doi.org/10.1002/int.21839

    Article  Google Scholar 

  9. Hu MJ, Yao YY (2019) Structured approximations as a basis for three-way decisions in rough set theory. Knowl Based Syst 165:92–109. https://doi.org/10.1016/j.knosys.2018.11.022

    Article  Google Scholar 

  10. Hu MJ, Deng XF, Yao YY (2019) On the properties of subsethood measures. Inf Sci 494:208–232. https://doi.org/10.1016/j.ins.2019.04.038

    MathSciNet  Article  MATH  Google Scholar 

  11. Kang XP, Miao DQ (2016) A study on information granularity in formal concept analysis based on concept-bases. Knowl Based Syst 105:147–159. https://doi.org/10.1016/j.knosys.2016.05.005

    Article  Google Scholar 

  12. Kok VJ, Chan CS (2017) GrCS: Granular computing-based crowd segmentation. IEEE Trans Cybern 47:1157–1168. https://doi.org/10.1109/TCYB.2016.2538765

    Article  Google Scholar 

  13. Li XP, Fang LX, Lu ZG, Zhang JF, Zhao H (2017) A line flow granular computing approach for economic dispatch with line constraints. IEEE Trans Power Syst 32:4832–4842. https://doi.org/10.1109/TPWRS.2017.2665583

    Article  Google Scholar 

  14. Liang JY, Wang F, Dang CY, Qian YH (2012) An efficient rough feature selection algorithm with a multi-granulation view. Int J Approx Reason 53:912–926. https://doi.org/10.1016/j.ijar.2012.02.004

    MathSciNet  Article  Google Scholar 

  15. Lin TY (1998) Granular computing on binary relations 1: data mining and neighborhood systems. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery 1. Physica, Heidelberg, pp 107–121

    Google Scholar 

  16. Mckenzie RN, McNulty GF, Taylor WF (1987) Algebras, lattices, varieties, vol I. Wadsworth Inc., Bemont

    Google Scholar 

  17. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356. https://doi.org/10.1007/BF01001956

    Article  MATH  Google Scholar 

  18. Pawlak Z (1984) Rough classification. Int J Man Mach Stud 20:469–483. https://doi.org/10.1016/S0020-7373(84)80022-X

    Article  MATH  Google Scholar 

  19. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic, Boston

    Google Scholar 

  20. Qian YH, Zhang H, Li FJ, Hu QH, Liang JY (2014) Set-based granular computing: a lattice model. Int J Approx Reason 55:834–852. https://doi.org/10.1016/j.ijar.2013.11.001

    MathSciNet  Article  MATH  Google Scholar 

  21. Skowron A, Stepaniuk J (2007) Modeling of high quality granules. In: Kryszkiewicz M, Peters JF, Rybinski H, Skowron A (eds) Rough sets and intelligent systems paradigms (RSEISP 2007). Springer, Heidelberg, pp 300–309. https://doi.org/10.1007/978-3-540-73451-2_32

    Google Scholar 

  22. Wang Y, Miao DQ (2012) Comparison of granular computing models in a set-theoretic framework. In: Zanzotto FM, Tsumoto S, Taatgen N, Yao YY (eds) Brain Informatics. Springer, Heidelberg, pp 332–337. https://doi.org/10.1007/978-3-642-35139-6_31

    Google Scholar 

  23. Wang GY, Xu J (2014) Granular computing with multiple granular layers for brain big data processing. Brain Inform 1:1–10. https://doi.org/10.1007/s40708-014-0001-z

    Article  Google Scholar 

  24. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered sets. Springer, Dordrecht, pp 445–470. https://doi.org/10.1007/978-94-009-7798-3_15

    Google Scholar 

  25. Xu WH, Li WT (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern 46:366–379. https://doi.org/10.1109/TCYB.2014.2361772

    Article  Google Scholar 

  26. Yao YY (2000a) Information granulation and rough set approximation. Int J Intell Syst 16:87–104. https://doi.org/10.1002/1098-111X(200101)16:1<87::AID-INT7>3.0.CO;2-S

    Article  Google Scholar 

  27. Yao YY (2000b) Granular computing: Basic issues and possible solutions. In: Proceedings of the 5th joint conference on information sciences, pp 186–189

  28. Yao YY (2004) A partition model of granular computing. In: Peters JF, Skowron A, Grzymała-Busse JW, Kostek B, Świniarski RW, Szczuka MS (eds) Transactions on rough sets I. Springer, Heidelberg, pp 232–253. https://doi.org/10.1007/978-3-540-27794-1_11

    Google Scholar 

  29. Yao YY (2016) A triarchic theory of granular computing. Granul Comput 1:145–157. https://doi.org/10.1007/s41066-015-0011-0

    Article  Google Scholar 

  30. Yao YY, Zhang N, Miao DQ, Xu FF (2012) Set-theoretic approaches to granular computing. Fund Inform 115:247–264. https://doi.org/10.3233/FI-2012-653

    MathSciNet  Article  MATH  Google Scholar 

  31. Young VR (1996) Fuzzy subsethood. Fuzzy Sets Syst 77:371–384. https://doi.org/10.1016/0165-0114(95)00045-3

    MathSciNet  Article  MATH  Google Scholar 

  32. Zadeh LA (1979) Fuzzy sets and information granularity. In: Gupta N, Ragade R, Yager R (eds) Advances in fuzzy set theory and applications. North-Holland, Amsterdam, pp 3–18. https://doi.org/10.1142/9789814261302_0022

    Google Scholar 

  33. Zadeh LA (1997) Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 19:111–127. https://doi.org/10.1016/S0165-0114(97)00077-8

    MathSciNet  Article  MATH  Google Scholar 

  34. Zeng Y, Zhong N (2008) On granular knowledge structures. In: Proceedings of 2008 international conference on advanced intelligence, Posts and Telecommunications Press, Beijing, pp 28–33

  35. Zhi HL, Li JH (2016) Granule description based on formal concept analysis. Knowl Based Syst 104:62–73. https://doi.org/10.1016/j.knosys.2016.04.011

    Article  Google Scholar 

  36. Zhong N, Huang JJ (2015) Granular structures induced by interval sets and rough sets. In: Yao YY, Hu QH, Yu H, Grzymala-Busse JW (eds) Rough sets, fuzzy sets, data mining, and granular computing (RSFDGrC 2015). Springer, Cham, pp 49–60. https://doi.org/10.1007/978-3-319-25783-9_5

    Google Scholar 

  37. Zhu W (2009) Relationships among basic concepts in covering-based rough sets. Inf Sci 179:2478–2486. https://doi.org/10.1016/j.ins.2009.02.013

    MathSciNet  Article  MATH  Google Scholar 

  38. Zhu XB, Pedrycz W, Li ZW (2009) Granular data description: designing ellipsoidal information granules. IEEE Trans Cybern 47:1157–1168. https://doi.org/10.1109/TCYB.2016.2612226

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank reviewers for their valuable comments and constructive suggestions. This research is supported by National Natural Science Foundation of China (61572011), Nature Science Foundation of Hebei Province (A2018201117), and a Discovery Grant from NSERC, Canada.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mengjun Hu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1. Proof of Theorem 2

Proof

we prove \(X = \bigcup _{x \in X} \langle\{x\}\rangle\) by proving the following two facts:

  1. 1.

    \(X \subseteq \bigcup _{x \in X} \langle\{x\}\rangle\).

    The proof is as follows:

    $$\begin{aligned} \forall \, x \in X&\Longrightarrow\{x\} \subseteq \langle\{x\}\rangle \qquad \qquad \qquad \qquad \,\,\,\, (<>\text { is a closure operator})\nonumber \\&\Longrightarrow X = \bigcup _{x \in X} \{x\} \subseteq \bigcup _{x \in X} \langle\{x\}\rangle. \end{aligned}$$
    (30)
  2. 2.

    \(X \supseteq \bigcup _{x \in X} \langle\{x\}\rangle\).

    The proof is as follows:

    $$\begin{aligned} \forall \, x \in X&\Longrightarrow\{x\} \subseteq X\nonumber \\&\Longrightarrow\langle\{x\}\rangle \subseteq \langle X\rangle \qquad \qquad \qquad \qquad \,\, (<>\text { is a closure operator})\nonumber \\&\Longrightarrow\langle\{x\}\rangle \subseteq X \qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\, (\langle X\rangle = X)\nonumber \\&\Longrightarrow\bigcup _{x \in X} \langle\{x\}\rangle \subseteq X. \end{aligned}$$
    (31)

2. Proof of Theorem 3

Proof

Since \(<>\) is a closure operator, we have \(\langle\langle\{x\}\rangle\rangle = \langle\{x\}\rangle\), that is, \(\langle\{x\}\rangle\) is a granule in \(G_{<>}\). Now, we prove that \(\{\langle\{x\}\rangle \mid x \in U\}\) is the family of basic granules by proving the two conditions in Definition 3.

  1. 1.

    Since \(\{x\}\) is a smallest nonempty subset of U, the set \(\langle\{x\}\rangle\) generated from \(\{x\}\) must also be a smallest set that can be generated by applying \(<>\) to nonempty subsets of U. Thus, there does not exist a granule in \(G_{<>}\) which is a proper subset of \(\langle\{x\}\rangle\). This means that \(\langle\{x\}\rangle\) satisfies the first condition of a basic granule in Definition 3.

  2. 2.

    By Definition 2, one can easily verify that the set union \(\cup\) is a composition operator. By the second property in Theorem 2, any granule \(X \in G_{<>}\) can be computed as the union of the set \(\{\langle\{x\}\rangle \mid x \in X\} \subseteq \{\langle\{x\}\rangle \mid x \in U\}\). Thus, the family \(\{\langle\{x\}\rangle \mid x \in U\}\) satisfies the second condition in Definition 3.

3. Proof of Theorem 9

Proof

Since \(cl(\{x\})\), where \(x \in U\) is a minimal nonempty closed set, it must also be a minimal nonempty granule in G. By Definition 3, we need to prove that any nonempty granule in G can be constructed from a subset of \(\{cl(\{x\}) \mid x \in U\}\). In particular, we prove that any granule \(cl(X) \in G\) can be expressed as \(\bigcup _{x \in X} cl(\{x\})\). We first prove that \(cl(X) = cl(\bigcup _{x \in X} cl(\{x\}))\) by the following two set-inclusion relations.

  1. 1.

    \(cl(X) \subseteq cl(\bigcup _{x \in X} cl(\{x\}))\).

    By property (1) in Eq. (2), we have \(\{x\} \subseteq cl(\{x\})\) for every \(x \in X\). Thus, we get \(\bigcup _{x \in X} \{x\} \subseteq \bigcup _{x \in X} cl(\{x\})\), that is, \(X \subseteq \bigcup _{x \in X} cl(\{x\})\). By property (2) in Eq. (2), we get \(cl(X) \subseteq cl(\bigcup _{x \in X} cl(\{x\}))\).

  2. 2.

    \(cl(X) \supseteq cl(\bigcup _{x \in X} cl(\{x\}))\).

    By property (2) in Eq. (2), we have \(cl(\{x\}) \subseteq cl(X)\) for every \(x \in X\), since \(\{x\} \subseteq X\). Thus, we get \(\bigcup _{x \in X} cl(\{x\}) \subseteq cl(X)\). By property (2) in Eq. (2), we then have \(cl(\bigcup _{x \in X} cl(\{x\})) \subseteq cl(cl(X))\). Since \(cl(X) \in G\), we have \(cl(cl(X)) = cl(X)\). Thus, we get \(cl(\bigcup _{x \in X} cl(\{x\})) \subseteq cl(X)\).

Since cl is closed for set union, we have

$$\begin{aligned} cl(X) = cl\left( \bigcup _{x \in X} cl(\{x\})\right) = \bigcup _{x \in X} cl(cl(\{x\})) = \bigcup _{x \in X} cl(\{x\}). \end{aligned}$$
(32)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mao, H., Hu, M. & Yao, Y. Algebraic approaches to granular computing. Granul. Comput. 6, 119–131 (2021). https://doi.org/10.1007/s41066-019-00178-2

Download citation

Keywords

  • Algebraic approach
  • Granular computing
  • Granular structure
  • Rough set
  • Formal concept analysis
  • Approximation