Skip to main content

Advertisement

Log in

Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm

  • Original Paper
  • Published:
Granular Computing Aims and scope Submit manuscript

Abstract

This paper describes a methodology based on optimal granularity allocation for fuzzy system design, and the main contribution is a method, based on the Firefly Algorithm, to generate and test information granules for fuzzy controllers of autonomous mobile robots. The Firefly Algorithm automatically generates and tests these granules which are defined by the parameter values of the membership functions, which are evaluated based on simulations of the robot plant and the final result is an ideal combination of information granules. The evaluation is made with a comparison of the actual trajectory generated by the fuzzy controller of the robot with respect to the desired path. To verify that the obtained results are significantly better, a statistical test is performed between the firefly and the genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Astudillo L, Melin P, Castillo O (2013) Optimization of a fuzzy tracking controller for an autonomous mobile robot under perturbed torques by means of a chemical optimization paradigm. In: Castillo O, Melin P, Kacprzyk J (eds) Recent advances on hybrid intelligent systems. Springer, Berlin, pp 3–20

    Chapter  Google Scholar 

  • Bernal E, Castillo O, Soria J (2017) Imperialist competitive algorithm with dynamic parameter adaptation applied to the optimization of mathematical functions. In: Melin P, Castillo O, Kacprzyk J (eds) Nature-inspired design of hybrid intelligent systems. Springer, Cham, pp 329–341

    Chapter  Google Scholar 

  • Besold TR, Uckelman SL (2018) Normative and descriptive rationality: from nature to artifice and back. J Exp Theor Artif Intell 30(2):331–344

    Article  Google Scholar 

  • Bloch A, Drakunov S (1995) Tracking in nonholonomic dynamic systems via sliding modes. In: Proceedings of the 34th IEEE conference on decision and control, vol. 3, pp 2103–2106

  • Chen SM, Chen CD (2011) Handling forecasting problems based on high-order fuzzy logical relationships. Expert Syst Appl 38(4):3857–3864

    Article  Google Scholar 

  • Chen SM, Chien CY (2011) Parallelized genetic ant colony systems for solving the traveling salesman problem. Expert Syst Appl 38(4):3873–3883

    Article  Google Scholar 

  • Chen SM, Tanuwijaya K (2011) Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques. Expert Syst Appl 38(12):15425–15437

    Article  Google Scholar 

  • Chen SM, Wang NY, Pan JS (2009) Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships. Expert Syst Appl 36(8):11070–11076

    Article  Google Scholar 

  • Chen SM, Munif A, Chen GS, Liu HC, Kuo BC (2012) Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights. Expert Syst Appl 39(7):6320–6334

    Article  Google Scholar 

  • Chwa D (2004) Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans Control Syst Technol 12(4):637–644

    Article  MathSciNet  Google Scholar 

  • Fierro R, Lewis FL (1997) Control of a nonholomic mobile robot: backstepping kinematics into dynamics. J Robot Syst 14(3):149–163

    Article  MATH  Google Scholar 

  • Fister I, Fister I Jr, BresViljem ZJ (2012) Memetic artificial bee colony algorithm for large-scale global optimization. In: 2012 IEEE Congress on evolutionary computation, pp 1–8

  • Giacomin SPA, Moreira HE, Pedrycz W (2015) A probabilistic approach for designing nonlinear optimal robust tracking controllers for unmanned aerial vehicles. Appl Soft Comput 34:26–38

    Article  Google Scholar 

  • Huh DJ, Park JH, Huh UY, Kim H (2002) Path planning and navigation for autonomous mobile robot. In: IEEE 2002 28th Annual conference of the industrial electronics society. IECON 02, 2, pp 1538–1542

  • Kanayama Y, Kimura Y, Miyazaki F, Noguchi T (1991) A stable tracking control method for a non-holonomic mobile robot. In: Proceedings IROS ’91: IEEE/RSJ international workshop on intelligent robots and systems ’91, pp 1236–1241

  • Lagunes LM, Castillo O, Soria J (2017) Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm. In: Melin P, Castillo O, Kacprzyk J, Reformat M, Melek W (eds) Fuzzy logic in intelligent system design. Springer, Cham, pp 131–137

    Google Scholar 

  • Lee LW, Chen SM (2015) Fuzzy decision making based on likelihood-based comparison relations of hesitant fuzzy linguistic term sets and hesitant fuzzy linguistic operators. Inf Sci 294:513–529

    Article  MathSciNet  MATH  Google Scholar 

  • Lin TY (1999) Granular computing: fuzzy logic and rough sets. In: Zadeh LA, Kacprzyk J (eds) Computing with words in formation/intelligent systems. Physica, Heidelberg, pp 183–200

    Chapter  Google Scholar 

  • Liu H, Cocea M, Ding W (2017) Multi-task learning for intelligent data processing in granular computing context. Granul Comput 3:257–273

    Article  Google Scholar 

  • Luca AD, Oriolo G, Vendittelli M (2001) Control of wheeled mobile robots: an experimental overview. In: Ramsete (ed). Springer, Berlin, pp 181–226

  • Martínez R, Castillo O, Aguilar TL (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf Sci 179(13):2158–2174

    Article  MATH  Google Scholar 

  • Melin P, Castillo O, Kacprzyk J (2017) Nature-inspired design of hybrid intelligent systems. Springer, Heidelberg

    Book  Google Scholar 

  • Nelson WL, Cox IJ (1990) Local path control for an autonomous vehicle. In: Cox IJ, Wilfong GT (eds) Autonomous robot vehicles. Springer, New York, pp 38–44

    Chapter  Google Scholar 

  • Palm R, Chadalavada R, Lilienthal AJ (2016) Fuzzy modeling and control for intention recognition in human-robot systems. In: IJCCI (FCTA), pp 67–74

  • Palm R, Bouguerra A, Abdullah M, Lilienthal AJ (2016) Navigation in human-robot and robot-robot interaction using optimization methods. In: 2016 IEEE international conference on systems, man, and cybernetics (SMC), pp 004489–004494

  • Pedrycz W (1994) Why triangular membership functions? Fuzzy Sets Syst 64(1):21–30

    Article  MathSciNet  Google Scholar 

  • Pedrycz W, Chen SM (2011) Granular computing and intelligent systems: design with information granules of higher order and higher type. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Chen SM (2015a) Granular Computing and decision-making: interactive and iterative approaches. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Chen SM (2015b) Information granularity, big data, and computational intelligence. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Skowron A, Kreinovich V, Wiley (2008) Handbook of granular computing. Wiley, New York

    Book  Google Scholar 

  • Rodríguez L, Castillo O, Soria J, Melin P, Valdez F, Gonzalez CI, Martinez GE, Soto J (2017) A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Appl Soft Comput 57:315–328

    Article  Google Scholar 

  • Sanchez MA, Castillo O, Castro JR (2017) An overview of granular computing using fuzzy logic systems. In: Melin P, Castillo O, Kacprzyk J (eds) Nature-inspired design of hybrid intelligent systems. Springer, Cham, pp 19–38

    Chapter  Google Scholar 

  • Sánchez D, Melin P, Castillo O (2017) Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng Appl Artif Intell 64:172–186

    Article  Google Scholar 

  • Sasiadek JZ, Lu Y, Polotski V (2007) Navigation of autonomous mobile robots—invited paper. In: Kozłowski K (eds) Robot motion and control 2007. Springer, London, pp 187–208

    Chapter  Google Scholar 

  • Silva CA, Runkler TA, Sousa JM, Palm R (2002) Ant colonies as logistic processes optimizers. In: International workshop on ant algorithms. Springer, Berlin, Heidelberg, pp 76–87

    Google Scholar 

  • Tsai PW, Pan JS, Chen SM, Liao BY (2008) Parallel cat swarm optimization. In: Proceedings of the 2008 international conference on machine learning and cybernetics, Kunming, vol. 6, pp 3328–3333

  • Tsai PW, Pan JS, Chen SM, Liao BY (2012) Enhanced parallel cat swarm optimization based on the Taguchi method. Expert Syst Appl 39(7):6309–6319

    Article  Google Scholar 

  • Valenzuela L, Valdez F, Melin P (2017) Flower pollination algorithm with fuzzy approach for solving optimization problems. In: Nature-inspired design of hybrid intelligent systems. Springer, New York, pp 357–369

    Book  Google Scholar 

  • Wang HY, Chen SM (2008) Evaluating students’ answerscripts using fuzzy numbers associated with degrees of confidence. IEEE Trans Fuzzy Syst 16(2):403–415

    Article  Google Scholar 

  • Xu Z, Wang H (2016) Managing multi-granularity linguistic information in qualitative group decision making: an overview. Granul Comput 1(1):21–35

    Article  Google Scholar 

  • Yang XS (2010a) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative for optimization (NICSO 2010). Springer, Berlin, Heidelberg, pp 65–74

    Chapter  Google Scholar 

  • Yang XS (2010b) Firefly algorithm, lévy flights and global optimization. In: Bramer M, Ellis R, Petridis M (eds) Research and development in intelligent systems XXVI. Springer, London, pp 209–218

    Chapter  Google Scholar 

  • Yang XS, Deb S (2010) Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 101–111

    Chapter  Google Scholar 

  • Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):36–50

    Article  Google Scholar 

  • Yao J (2005a) Information granulation and granular relationships. In: IEEE International conference on granular computing. Beijing, pp 326–329

  • Yao Y (2005b) Perspectives of granular computing. In: Proceedings of 2005 IEEE international conference on granular computing. Beijing, pp 85–90

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1988) Fuzzy logic. Computer 21(4):83–93

    Article  Google Scholar 

  • Zadeh LA (1996) On fuzzy algorithms. In fuzzy sets, fuzzy logic, and fuzzy systems: selected papers By Lotfi A Zadeh, pp 127–147

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagunes, M.L., Castillo, O., Soria, J. et al. Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm. Granul. Comput. 4, 185–195 (2019). https://doi.org/10.1007/s41066-018-0121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41066-018-0121-6

Keywords

Navigation