Skip to main content
Log in

Granular cognitive maps: a review

  • Original Paper
  • Published:
Granular Computing Aims and scope Submit manuscript

Abstract

In this paper, we survey different granular computing (GrC) applications to the field of cognitive mapping by highlighting how fuzzy cognitive maps (FCMs) have been augmented with different types of information granules such as intervals, fuzzy sets, fuzzy clustering, rough sets, and grey sets. These information granules have been integrated into core FCM components such as their set of concept nodes, the causal links among these concepts or their underlying inference mechanisms. We discuss the advantages and limitations brought forth by these granular cognitive maps (GCMs) as well as their reported applications, with especial emphasis on time series analysis and pattern classification scenarios. To the best of our knowledge, this is the first time that GCMs stemming from a variety of granular constructs are systematically reviewed. We hope this survey inspires further research endeavors in the exciting interplay between GrC and intelligent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Figure used with permission from the publisher

Fig. 4

Similar content being viewed by others

References

  • Abraham A, Falcon R, Bello R (2009) Rough set theory: a true landmark in data analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Al Farsi A, Doctor F, Petrovic D, Chandran S, Karyotis C (2017) Interval valued data enhanced fuzzy cognitive maps: torwards an approach for autism deduction in toddlers. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 1–6

  • Al-Hmouz R, Pedrycz W, Balamash A, Morfeq A (2014) From data to granular data and granular classifiers. In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 432–438

  • Andreou AS, Mateou NH, Zombanakis GA (2005) Soft computing for crisis management and political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Comput 9(3):194–210

    Article  Google Scholar 

  • Balamash A, Pedrycz W, Al-Hmouz R, Morfeq A (2017) Granular classifiers and their design through refinement of information granules. Soft Comput 21(10):2745–2759

    Article  MATH  Google Scholar 

  • Bello R, Falcon R, Pedrycz W, Kacprzyk J (2008) Granular computing: at the junction of rough sets and fuzzy sets. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bello R, Nápoles G, Fuentes I, Grau I, Falcon R, Bello R, Vanhoof K (2017) A fuzzy activation mechanism for rough cognitive ensembles. In: 2nd international symposium on fuzzy and rough sets (ISFUROS)

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  • BoussaïD I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  Google Scholar 

  • Chen M, Herrera F, Hwang K (2018) Cognitive computing: architecture, technologies and intelligent applications. IEEE Access 6:19774–19783

    Article  Google Scholar 

  • Cheng W, Hüllermeier E, Dembczynski KJ (2010) Graded multilabel classification: the ordinal case. In: Proceedings of the 27th international conference on machine learning (icml-10), pp 223–230

  • Çoban V, Onar SÇ (2017) Modelling solar energy usage with fuzzy cognitive maps. In: Intelligence systems in environmental management: theory and applications, Springer, pp 159–187

  • D’Aniello G, Gaeta A, Gaeta M, Loia V, Reformat MZ (2016) Collective awareness in smart city with fuzzy cognitive maps and fuzzy sets. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 1554–1561

  • D’Aniello G, Gaeta A, Loia V, Orciuoli F (2017) A granular computing framework for approximate reasoning in situation awareness. Granul Comput 2(3):141–158

    Article  Google Scholar 

  • De Oliveira JV, Pedrycz W (2007) Advances in fuzzy clustering and its applications. Wiley, New York

    Book  Google Scholar 

  • Ding S, Jia H, Chen J, Jin F (2014) Granular neural networks. Artif Intell Rev 41(3):373–384

    Article  Google Scholar 

  • Dodurka MF, Sahin A, Yesil E, Urbas L (2015) Learning of FCMs with causal links represented via fuzzy triangular numbers. In: 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 1–8

  • Dodurka MF, Yesil E, Urbas L (2017) Causal effect analysis for fuzzy cognitive maps designed with non-singleton fuzzy numbers. Neurocomputing 232:122–132

    Article  Google Scholar 

  • Dubois D, Prade H (1990a) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:91209

    Article  MATH  Google Scholar 

  • Dubois D, Prade H (1990b) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17(2–3):191–209

    Article  MATH  Google Scholar 

  • Falcon R, Nayak A, Abielmona R (2012) An online shadowed clustering algorithm applied to risk visualization in territorial security. In: IEEE symposium on computational intelligence for security and defense applications (CISDA). Ottawa, Canada, pp 1–8

  • Felix G, Nápoles G, Falcon R, Froelich W, Vanhoof K, Bello R (2017) A review on methods and software for fuzzy cognitive maps. Artif Intell Rev. https://doi.org/10.1007/s10462-017-9575-1

    Article  Google Scholar 

  • Froelich W, Pedrycz W (2017) Fuzzy cognitive maps in the modeling of granular time series. Knowl Based Syst 115:110–122

    Article  Google Scholar 

  • Ganguli R (2014) Fuzzy cognitive maps for structural damage detection. In: Fuzzy cognitive maps for applied sciences and engineering, Springer, pp 267–290

  • Homenda W, Jastrzebska A (2017) Clustering techniques for fuzzy cognitive map design for time series modeling. Neurocomputing 232:3–15

    Article  Google Scholar 

  • Homenda W, Pedrycz W (2014) Automatic data understanding—a linguistic tool for granular cognitive maps designing. In: IEEE conference on intelligent systems no (1), pp 217–228

  • Homenda W, Jastrzebska A, Pedrycz W (2014a) Granular cognitive maps reconstruction. In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 2572–2579

  • Homenda W, Jastrzebska A, Pedrycz W (2014b) Joining concepts based fuzzy cognitive map model with moving window technique for time series modeling. In: IFIP international conference on computer information systems and industrial management, Springer, pp 397–408

  • Homenda W, Jastrzebska A, Pedrycz W (2014c) Time series modeling with fuzzy cognitive maps: Simplification strategies. In: IFIP international conference on computer information systems and industrial management, Springer, pp 409–420

  • Homenda W, Jastrzebska A, Pedrycz W (2016) Fuzzy cognitive map reconstruction: dynamics versus history. Appl Math Inf Sci 10(1):93

    Article  MATH  Google Scholar 

  • Iakovidis DK, Papageorgiou E (2011) Intuitionistic fuzzy cognitive maps for medical decision making. IEEE Trans Inf Technol Biomed 15(1):100–107

    Article  Google Scholar 

  • Inuiguchi M, Wu WZ, Cornelis C, Verbiest N (2015) Fuzzy-rough hybridization. Springer, Berlin, pp 425–451

    Google Scholar 

  • Kaburlasos VG, Papadakis SE (2009) A granular extension of the fuzzy-ARTMAP (FAM) neural classifier based on fuzzy lattice reasoning (FLR). Neurocomputing 72(10–12):2067–2078

    Article  Google Scholar 

  • Kelly J III, Hamm S (2013) Smart machines: IBMÕs Watson and the era of cognitive computing. Columbia University Press, New York

    Book  Google Scholar 

  • Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24(1):65–75

    Article  MATH  Google Scholar 

  • Kosko B (1988) Hidden patterns in combined and adaptive knowledge networks. Int J Approx Reason 2(4):377–393

    Article  MATH  Google Scholar 

  • León M, Depaire B, Vanhoof K (2013) Fuzzy cognitive maps with rough concepts. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 527–536

  • Liao H, Xu Z, Herrera-Viedma E, Herrera F (2017) Hesitant fuzzy linguistic term set and its application in decision making: a state-of-the-art survey. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-017-0432-9

    Article  Google Scholar 

  • Lingras P (1996) Rough neural networks. In: Proceedings of the 6th international conference on information processing and management of uncertainty in knowledgebased systems, pp 1445–1450

  • Liu H, Cocea M (2017) Granular computing based machine learning: a big data processing approach, vol 35. Springer, Berlin

    Google Scholar 

  • Liu W, Liao H (2017) A bibliometric analysis of fuzzy decision research during 1970–2015. Int J Fuzzy Syst 19(1):1–14

    Article  Google Scholar 

  • Livi L, Sadeghian A (2015) Data granulation by the principles of uncertainty. Pattern Recogn Lett 67:113–121

    Article  Google Scholar 

  • Lu W, Yang J, Liu X (2013) The linguistic forecasting of time series based on fuzzy cognitive maps. In: IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013 joint. IEEE, pp 649–654

  • Lu W, Yang J, Liu X (2014a) Numerical prediction of time series based on FCMs with information granules. Int J Comput Commun Control 9(3):313–324

    Article  Google Scholar 

  • Lu W, Yang J, Liu X, Pedrycz W (2014b) The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy c-means clustering. Knowl Based Syst 70:242–255

    Article  Google Scholar 

  • Marz N, Warren J (2015) Big data: principles and best practices of scalable realtime data systems. Manning Publications Co, New York

    Google Scholar 

  • Mitra S, Pedrycz W, Barman B (2010) Shadowed c-means: Integrating fuzzy and rough clustering. Pattern Recogn 43(4):1282–1291

    Article  MATH  Google Scholar 

  • Modha DS, Ananthanarayanan R, Esser SK, Ndirango A, Sherbondy AJ, Singh R (2011) Cognitive computing. Commun ACM 54(8):62–71

    Article  Google Scholar 

  • Mourhir A, Papageorgiou EI, Kokkinos K, Rachidi T (2017) Exploring precision farming scenarios using fuzzy cognitive maps. Sustainability 9(7):1241

    Article  Google Scholar 

  • Nápoles G, Grau I, Vanhoof K, Bello R (2014) Hybrid model based on rough sets theory and fuzzy cognitive maps for decision-making. Springer International Publishing, Cham, pp 169–178

  • Nápoles G, Falcon R, Papageorgiou E, Bello R, Vanhoof K (2016) Partitive granular cognitive maps to graded multilabel classification. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1363–1370

  • Nápoles G, Grau I, Falcon R, Bello R, Vanhoof K (2016) A granular intrusion detection system using rough cognitive networks. In: Abielmona R, Falcon R, Zincir-Heywood N, Abbass H (eds) Recent advances in computational intelligence in defense and security, chap 7. Springer, Berlin

    Google Scholar 

  • Nápoles G, Grau I, Papageorgiou E, Bello R, Vanhoof K (2016) Rough cognitive networks. Knowl Based Syst 91:46–61

    Article  Google Scholar 

  • Nápoles G, Falcon R, Papageorgiou E, Bello R, Vanhoof K (2017) Rough cognitive ensembles. Int J Approx Reason 85:79–96

    Article  MathSciNet  MATH  Google Scholar 

  • Nápoles G, Mosquera C, Falcon R, Grau I, Bello R, Vanhoof K (2018) Fuzzy-rough cognitive networks. Neural Netw 97:19–27

    Article  Google Scholar 

  • Nguyen HT (1978) A note on the extension principle for fuzzy sets. J Math Anal Appl 64(2):369–380

    Article  MathSciNet  MATH  Google Scholar 

  • Papageorgiou E, Spyridonos P, Glotsos DT, Stylios CD, Ravazoula P, Nikiforidis G, Groumpos PP (2008) Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Appl Soft Comput 8(1):820–828

    Article  Google Scholar 

  • Papageorgiou EI, Iakovidis DK (2013) Intuitionistic fuzzy cognitive maps. IEEE Trans Fuzzy Syst 21(2):342–354

    Article  Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356

    Article  MATH  Google Scholar 

  • Pawlak Z (1992) Rough sets-theoretical aspect of reasoning about data, 1st edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pedrycz W (1998) Shadowed sets: representing and processing fuzzy sets. IEEE Trans Syst Man Cybern Part B (Cybern) 28(1):103–109

    Article  Google Scholar 

  • Pedrycz W (2006) Granular computing: an overview. In: Applied soft computing technologies: the challenge of complexity, Springer, pp 19–34

  • Pedrycz W (2010) The design of cognitive maps: a study in synergy of granular computing and evolutionary optimization. Expert Syst Appl 37(10):7288–7294

    Article  Google Scholar 

  • Pedrycz W (2011) The principle of justifiable granularity and an optimization of information granularity allocation as fundamentals of granular computing. J Inf Process Syst 7(3):397–412

    Article  Google Scholar 

  • Pedrycz W (2012) From fuzzy rule-based systems to granular fuzzy rule-based systems: a study in granular computing. In: Combining experimentation and theory, Springer, pp 151–162

  • Pedrycz W (2013) Granular computing: analysis and design of intelligent systems. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pedrycz W, Chen SM (2011) Granular computing and intelligent systems: design with information granules of higher order and higher type. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Chen SM (2015a) Granular computing and decision-making: interactive and iterative approaches. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Chen SM (2015b) Information granularity, big data, and computational intelligence. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Homenda W (2012) From fuzzy cognitive maps to granular cognitive maps. Comput Collect Intell Technol Appl. https://doi.org/10.1007/978-3-642-34630-9_19

    Article  Google Scholar 

  • Pedrycz W, Homenda W (2013) Building the fundamentals of granular computing: a principle of justifiable granularity. Appl Soft Comput 13(10):4209–4218

    Article  Google Scholar 

  • Pedrycz W, Homenda W (2014) From fuzzy cognitive maps to granular cognitive maps. IEEE Trans Fuzzy Syst 22(4):859–869

    Article  Google Scholar 

  • Pedrycz W, Wang X (2016) Designing fuzzy sets with the use of the parametric principle of justifiable granularity. IEEE Trans Fuzzy Syst 24(2):489–496

    Article  Google Scholar 

  • Pedrycz W, Skowron A, Kreinovich V (2008) Handbook of granular computing. Wiley, New York

    Book  Google Scholar 

  • Pedrycz W, Al-Hmouz R, Morfeq A, Balamash AS (2015a) Distributed proximity-based granular clustering: towards a development of global structural relationships in data. Soft Comput 19(10):2751–2767

    Article  Google Scholar 

  • Pedrycz W, Succi G, Sillitti A, Iljazi J (2015b) Data description: a general framework of information granules. Knowl Based Syst 80:98–108

    Article  Google Scholar 

  • Pedrycz W, Jastrzebska A, Homenda W (2016) Design of fuzzy cognitive maps for modeling time series. IEEE Trans Fuzzy Syst 24(1):120–130

    Article  MATH  Google Scholar 

  • Peters J, Pal S (2010) Cantor, fuzzy, near, and rough sets in image analysis. In: Rough fuzzy image analysis foundations and methodologies pp 1–15

  • Peters JF (2009) Fuzzy sets, near sets, and rough sets for your computational intelligence toolbox. In: Foundations of computational intelligence, vol 2, Springer, pp 3–25

  • Polkowski L, Artiemjew P (2007) Granular computing: granular classifiers and missing values. In: 6th IEEE international conference on cognitive informatics. IEEE, pp 186–194

  • Radzikowska AM, Kerre EE (2002) A comparative study of fuzzy rough sets. Fuzzy Sets Syst 126(2):137–155

    Article  MathSciNet  MATH  Google Scholar 

  • Salmeron JL (2010) Modelling grey uncertainty with fuzzy grey cognitive maps. Expert Syst Appl 37(12):7581–7588

    Article  Google Scholar 

  • Salmeron JL, Palos-Sanchez PR (2017) Uncertainty propagation in fuzzy grey cognitive maps with Hebbian-like learning algorithms. IEEE Trans Cybern

  • Skalna I (2018) Interval arithmetic. Springer International Publishing, Cham, pp 1–24

    MATH  Google Scholar 

  • Stach W, Kurgan LA, Pedrycz W (2008) Numerical and linguistic prediction of time series with the use of fuzzy cognitive maps. IEEE Trans Fuzzy Syst 16(1):61–72

    Article  Google Scholar 

  • Stylios CD, Groumpos PP (2004) Modeling complex systems using fuzzy cognitive maps. IEEE Trans Syst Man Cybern Part A Syst Hum 34(1):155–162

    Article  Google Scholar 

  • Szczuka M, Jankowski A, Skowron A, Slezak D (2015) Building granular systems—from concepts to applications. In: Rough sets, fuzzy sets, data mining, and granular computing. Springer, pp 245–255

  • Wagner C, Miller S, Garibaldi JM, Anderson DT, Havens TC (2015) From interval-valued data to general type-2 fuzzy sets. IEEE Trans Fuzzy Syst 23(2):248–269

    Article  Google Scholar 

  • Wang G (2017) DGCC: data-driven granular cognitive computing. Granul Comput 2(4):343–355

    Article  Google Scholar 

  • Wang G, Yang J, Xu J (2017) Granular computing: from granularity optimization to multi-granularity joint problem solving. Granul Comput 2(3):105–120

    Article  Google Scholar 

  • Wilson DR, Martinez TR (1997) Improved heterogeneous distance functions. J Artif Intell Res 6(1):1–34

    Article  MathSciNet  MATH  Google Scholar 

  • Witten IH, Frank E, Hall M, Pal C (2017) Data mining: practical machine learning tools and techniques, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  • Xu W, Li W, Zhang X (2017) Generalized multigranulation rough sets and optimal granularity selection. Granul Comput 2(4):271–288

    Article  Google Scholar 

  • Yao Y (2011) The superiority of three-way decisions in probabilistic rough set models. Inf Sci 181(1):1080–1096

    Article  MathSciNet  MATH  Google Scholar 

  • Yesil E, Dodurka MF, Urbas L (2014) Triangular fuzzy number representation of relations in fuzzy cognitive maps. In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1021–1028

  • Zadeh L (1965) Fuzzy sets. Inf Control 8(338–353):65–75

    Google Scholar 

  • Zhu X, Pedrycz W, Li Z (2016) Granular description of data: Building information granules with the aid of the principle of justifiable granularity. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 969–976

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Falcon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcon, R., Nápoles, G., Bello, R. et al. Granular cognitive maps: a review. Granul. Comput. 4, 451–467 (2019). https://doi.org/10.1007/s41066-018-0104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41066-018-0104-7

Keywords

Navigation