Granular cognitive maps: a review

  • Rafael Falcon
  • Gonzalo Nápoles
  • Rafael Bello
  • Koen Vanhoof
Original Paper
  • 3 Downloads

Abstract

In this paper, we survey different granular computing (GrC) applications to the field of cognitive mapping by highlighting how fuzzy cognitive maps (FCMs) have been augmented with different types of information granules such as intervals, fuzzy sets, fuzzy clustering, rough sets, and grey sets. These information granules have been integrated into core FCM components such as their set of concept nodes, the causal links among these concepts or their underlying inference mechanisms. We discuss the advantages and limitations brought forth by these granular cognitive maps (GCMs) as well as their reported applications, with especial emphasis on time series analysis and pattern classification scenarios. To the best of our knowledge, this is the first time that GCMs stemming from a variety of granular constructs are systematically reviewed. We hope this survey inspires further research endeavors in the exciting interplay between GrC and intelligent systems.

Keywords

Granular computing Fuzzy cognitive maps Granular machine learning Time series analysis Pattern classification 

Notes

References

  1. Abraham A, Falcon R, Bello R (2009) Rough set theory: a true landmark in data analysis. Springer, BerlinCrossRefMATHGoogle Scholar
  2. Al Farsi A, Doctor F, Petrovic D, Chandran S, Karyotis C (2017) Interval valued data enhanced fuzzy cognitive maps: torwards an approach for autism deduction in toddlers. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 1–6Google Scholar
  3. Al-Hmouz R, Pedrycz W, Balamash A, Morfeq A (2014) From data to granular data and granular classifiers. In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 432–438Google Scholar
  4. Andreou AS, Mateou NH, Zombanakis GA (2005) Soft computing for crisis management and political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Comput 9(3):194–210CrossRefGoogle Scholar
  5. Balamash A, Pedrycz W, Al-Hmouz R, Morfeq A (2017) Granular classifiers and their design through refinement of information granules. Soft Comput 21(10):2745–2759CrossRefMATHGoogle Scholar
  6. Bello R, Falcon R, Pedrycz W, Kacprzyk J (2008) Granular computing: at the junction of rough sets and fuzzy sets. Springer, BerlinCrossRefMATHGoogle Scholar
  7. Bello R, Nápoles G, Fuentes I, Grau I, Falcon R, Bello R, Vanhoof K (2017) A fuzzy activation mechanism for rough cognitive ensembles. In: 2nd international symposium on fuzzy and rough sets (ISFUROS)Google Scholar
  8. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203CrossRefGoogle Scholar
  9. BoussaïD I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117MathSciNetCrossRefMATHGoogle Scholar
  10. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140MATHGoogle Scholar
  11. Chen M, Herrera F, Hwang K (2018) Cognitive computing: architecture, technologies and intelligent applications. IEEE Access 6:19774–19783CrossRefGoogle Scholar
  12. Cheng W, Hüllermeier E, Dembczynski KJ (2010) Graded multilabel classification: the ordinal case. In: Proceedings of the 27th international conference on machine learning (icml-10), pp 223–230Google Scholar
  13. Çoban V, Onar SÇ (2017) Modelling solar energy usage with fuzzy cognitive maps. In: Intelligence systems in environmental management: theory and applications, Springer, pp 159–187Google Scholar
  14. D’Aniello G, Gaeta A, Gaeta M, Loia V, Reformat MZ (2016) Collective awareness in smart city with fuzzy cognitive maps and fuzzy sets. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 1554–1561Google Scholar
  15. D’Aniello G, Gaeta A, Loia V, Orciuoli F (2017) A granular computing framework for approximate reasoning in situation awareness. Granul Comput 2(3):141–158CrossRefGoogle Scholar
  16. De Oliveira JV, Pedrycz W (2007) Advances in fuzzy clustering and its applications. Wiley, New YorkCrossRefGoogle Scholar
  17. Ding S, Jia H, Chen J, Jin F (2014) Granular neural networks. Artif Intell Rev 41(3):373–384CrossRefGoogle Scholar
  18. Dodurka MF, Sahin A, Yesil E, Urbas L (2015) Learning of FCMs with causal links represented via fuzzy triangular numbers. In: 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 1–8Google Scholar
  19. Dodurka MF, Yesil E, Urbas L (2017) Causal effect analysis for fuzzy cognitive maps designed with non-singleton fuzzy numbers. Neurocomputing 232:122–132CrossRefGoogle Scholar
  20. Dubois D, Prade H (1990a) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:91209CrossRefMATHGoogle Scholar
  21. Dubois D, Prade H (1990b) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17(2–3):191–209CrossRefMATHGoogle Scholar
  22. Falcon R, Nayak A, Abielmona R (2012) An online shadowed clustering algorithm applied to risk visualization in territorial security. In: IEEE symposium on computational intelligence for security and defense applications (CISDA). Ottawa, Canada, pp 1–8Google Scholar
  23. Felix G, Nápoles G, Falcon R, Froelich W, Vanhoof K, Bello R (2017) A review on methods and software for fuzzy cognitive maps. Artif Intell Rev.  https://doi.org/10.1007/s10462-017-9575-1 Google Scholar
  24. Froelich W, Pedrycz W (2017) Fuzzy cognitive maps in the modeling of granular time series. Knowl Based Syst 115:110–122CrossRefGoogle Scholar
  25. Ganguli R (2014) Fuzzy cognitive maps for structural damage detection. In: Fuzzy cognitive maps for applied sciences and engineering, Springer, pp 267–290Google Scholar
  26. Homenda W, Jastrzebska A (2017) Clustering techniques for fuzzy cognitive map design for time series modeling. Neurocomputing 232:3–15CrossRefGoogle Scholar
  27. Homenda W, Pedrycz W (2014) Automatic data understanding—a linguistic tool for granular cognitive maps designing. In: IEEE conference on intelligent systems no (1), pp 217–228Google Scholar
  28. Homenda W, Jastrzebska A, Pedrycz W (2014a) Granular cognitive maps reconstruction. In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, pp 2572–2579Google Scholar
  29. Homenda W, Jastrzebska A, Pedrycz W (2014b) Joining concepts based fuzzy cognitive map model with moving window technique for time series modeling. In: IFIP international conference on computer information systems and industrial management, Springer, pp 397–408Google Scholar
  30. Homenda W, Jastrzebska A, Pedrycz W (2014c) Time series modeling with fuzzy cognitive maps: Simplification strategies. In: IFIP international conference on computer information systems and industrial management, Springer, pp 409–420Google Scholar
  31. Homenda W, Jastrzebska A, Pedrycz W (2016) Fuzzy cognitive map reconstruction: dynamics versus history. Appl Math Inf Sci 10(1):93CrossRefGoogle Scholar
  32. Iakovidis DK, Papageorgiou E (2011) Intuitionistic fuzzy cognitive maps for medical decision making. IEEE Trans Inf Technol Biomed 15(1):100–107CrossRefGoogle Scholar
  33. Inuiguchi M, Wu WZ, Cornelis C, Verbiest N (2015) Fuzzy-rough hybridization. Springer, Berlin, pp 425–451Google Scholar
  34. Kaburlasos VG, Papadakis SE (2009) A granular extension of the fuzzy-ARTMAP (FAM) neural classifier based on fuzzy lattice reasoning (FLR). Neurocomputing 72(10–12):2067–2078CrossRefGoogle Scholar
  35. Kelly J III, Hamm S (2013) Smart machines: IBMÕs Watson and the era of cognitive computing. Columbia University Press, New YorkCrossRefGoogle Scholar
  36. Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24(1):65–75CrossRefMATHGoogle Scholar
  37. Kosko B (1988) Hidden patterns in combined and adaptive knowledge networks. Int J Approx Reason 2(4):377–393CrossRefMATHGoogle Scholar
  38. León M, Depaire B, Vanhoof K (2013) Fuzzy cognitive maps with rough concepts. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 527–536Google Scholar
  39. Liao H, Xu Z, Herrera-Viedma E, Herrera F (2017) Hesitant fuzzy linguistic term set and its application in decision making: a state-of-the-art survey. Int J Fuzzy Syst.  https://doi.org/10.1007/s40815-017-0432-9 Google Scholar
  40. Lingras P (1996) Rough neural networks. In: Proceedings of the 6th international conference on information processing and management of uncertainty in knowledgebased systems, pp 1445–1450Google Scholar
  41. Liu H, Cocea M (2017) Granular computing based machine learning: a big data processing approach, vol 35. Springer, BerlinGoogle Scholar
  42. Liu W, Liao H (2017) A bibliometric analysis of fuzzy decision research during 1970–2015. Int J Fuzzy Syst 19(1):1–14CrossRefGoogle Scholar
  43. Livi L, Sadeghian A (2015) Data granulation by the principles of uncertainty. Pattern Recogn Lett 67:113–121CrossRefGoogle Scholar
  44. Lu W, Yang J, Liu X (2013) The linguistic forecasting of time series based on fuzzy cognitive maps. In: IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013 joint. IEEE, pp 649–654Google Scholar
  45. Lu W, Yang J, Liu X (2014a) Numerical prediction of time series based on FCMs with information granules. Int J Comput Commun Control 9(3):313–324CrossRefGoogle Scholar
  46. Lu W, Yang J, Liu X, Pedrycz W (2014b) The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy c-means clustering. Knowl Based Syst 70:242–255CrossRefGoogle Scholar
  47. Marz N, Warren J (2015) Big data: principles and best practices of scalable realtime data systems. Manning Publications Co, New YorkGoogle Scholar
  48. Mitra S, Pedrycz W, Barman B (2010) Shadowed c-means: Integrating fuzzy and rough clustering. Pattern Recogn 43(4):1282–1291CrossRefMATHGoogle Scholar
  49. Modha DS, Ananthanarayanan R, Esser SK, Ndirango A, Sherbondy AJ, Singh R (2011) Cognitive computing. Commun ACM 54(8):62–71CrossRefGoogle Scholar
  50. Mourhir A, Papageorgiou EI, Kokkinos K, Rachidi T (2017) Exploring precision farming scenarios using fuzzy cognitive maps. Sustainability 9(7):1241CrossRefGoogle Scholar
  51. Nápoles G, Grau I, Vanhoof K, Bello R (2014) Hybrid model based on rough sets theory and fuzzy cognitive maps for decision-making. Springer International Publishing, Cham, pp 169–178Google Scholar
  52. Nápoles G, Falcon R, Papageorgiou E, Bello R, Vanhoof K (2016) Partitive granular cognitive maps to graded multilabel classification. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1363–1370Google Scholar
  53. Nápoles G, Grau I, Falcon R, Bello R, Vanhoof K (2016) A granular intrusion detection system using rough cognitive networks. In: Abielmona R, Falcon R, Zincir-Heywood N, Abbass H (eds) Recent advances in computational intelligence in defense and security, chap 7. Springer, BerlinGoogle Scholar
  54. Nápoles G, Grau I, Papageorgiou E, Bello R, Vanhoof K (2016) Rough cognitive networks. Knowl Based Syst 91:46–61CrossRefGoogle Scholar
  55. Nápoles G, Falcon R, Papageorgiou E, Bello R, Vanhoof K (2017) Rough cognitive ensembles. Int J Approx Reason 85:79–96MathSciNetCrossRefMATHGoogle Scholar
  56. Nápoles G, Mosquera C, Falcon R, Grau I, Bello R, Vanhoof K (2018) Fuzzy-rough cognitive networks. Neural Netw 97:19–27CrossRefGoogle Scholar
  57. Nguyen HT (1978) A note on the extension principle for fuzzy sets. J Math Anal Appl 64(2):369–380MathSciNetCrossRefMATHGoogle Scholar
  58. Papageorgiou E, Spyridonos P, Glotsos DT, Stylios CD, Ravazoula P, Nikiforidis G, Groumpos PP (2008) Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Appl Soft Comput 8(1):820–828CrossRefGoogle Scholar
  59. Papageorgiou EI, Iakovidis DK (2013) Intuitionistic fuzzy cognitive maps. IEEE Trans Fuzzy Syst 21(2):342–354CrossRefGoogle Scholar
  60. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356CrossRefMATHGoogle Scholar
  61. Pawlak Z (1992) Rough sets-theoretical aspect of reasoning about data, 1st edn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  62. Pedrycz W (1998) Shadowed sets: representing and processing fuzzy sets. IEEE Trans Syst Man Cybern Part B (Cybern) 28(1):103–109MathSciNetCrossRefGoogle Scholar
  63. Pedrycz W (2006) Granular computing: an overview. In: Applied soft computing technologies: the challenge of complexity, Springer, pp 19–34Google Scholar
  64. Pedrycz W (2010) The design of cognitive maps: a study in synergy of granular computing and evolutionary optimization. Expert Syst Appl 37(10):7288–7294CrossRefGoogle Scholar
  65. Pedrycz W (2011) The principle of justifiable granularity and an optimization of information granularity allocation as fundamentals of granular computing. J Inf Process Syst 7(3):397–412CrossRefGoogle Scholar
  66. Pedrycz W (2012) From fuzzy rule-based systems to granular fuzzy rule-based systems: a study in granular computing. In: Combining experimentation and theory, Springer, pp 151–162Google Scholar
  67. Pedrycz W (2013) Granular computing: analysis and design of intelligent systems. CRC Press, Boca RatonCrossRefGoogle Scholar
  68. Pedrycz W, Chen SM (2011) Granular computing and intelligent systems: design with information granules of higher order and higher type. Springer, HeidelbergCrossRefGoogle Scholar
  69. Pedrycz W, Chen SM (2015a) Granular computing and decision-making: interactive and iterative approaches. Springer, HeidelbergCrossRefGoogle Scholar
  70. Pedrycz W, Chen SM (2015b) Information granularity, big data, and computational intelligence. Springer, HeidelbergCrossRefGoogle Scholar
  71. Pedrycz W, Homenda W (2012) From fuzzy cognitive maps to granular cognitive maps. Comput Collect Intell Technol Appl.  https://doi.org/10.1007/978-3-642-34630-9_19 Google Scholar
  72. Pedrycz W, Homenda W (2013) Building the fundamentals of granular computing: a principle of justifiable granularity. Appl Soft Comput 13(10):4209–4218CrossRefGoogle Scholar
  73. Pedrycz W, Homenda W (2014) From fuzzy cognitive maps to granular cognitive maps. IEEE Trans Fuzzy Syst 22(4):859–869CrossRefGoogle Scholar
  74. Pedrycz W, Wang X (2016) Designing fuzzy sets with the use of the parametric principle of justifiable granularity. IEEE Trans Fuzzy Syst 24(2):489–496CrossRefGoogle Scholar
  75. Pedrycz W, Skowron A, Kreinovich V (2008) Handbook of granular computing. Wiley, New YorkCrossRefGoogle Scholar
  76. Pedrycz W, Al-Hmouz R, Morfeq A, Balamash AS (2015a) Distributed proximity-based granular clustering: towards a development of global structural relationships in data. Soft Comput 19(10):2751–2767CrossRefGoogle Scholar
  77. Pedrycz W, Succi G, Sillitti A, Iljazi J (2015b) Data description: a general framework of information granules. Knowl Based Syst 80:98–108CrossRefGoogle Scholar
  78. Pedrycz W, Jastrzebska A, Homenda W (2016) Design of fuzzy cognitive maps for modeling time series. IEEE Trans Fuzzy Syst 24(1):120–130CrossRefGoogle Scholar
  79. Peters J, Pal S (2010) Cantor, fuzzy, near, and rough sets in image analysis. In: Rough fuzzy image analysis foundations and methodologies pp 1–15Google Scholar
  80. Peters JF (2009) Fuzzy sets, near sets, and rough sets for your computational intelligence toolbox. In: Foundations of computational intelligence, vol 2, Springer, pp 3–25Google Scholar
  81. Polkowski L, Artiemjew P (2007) Granular computing: granular classifiers and missing values. In: 6th IEEE international conference on cognitive informatics. IEEE, pp 186–194Google Scholar
  82. Radzikowska AM, Kerre EE (2002) A comparative study of fuzzy rough sets. Fuzzy Sets Syst 126(2):137–155MathSciNetCrossRefMATHGoogle Scholar
  83. Salmeron JL (2010) Modelling grey uncertainty with fuzzy grey cognitive maps. Expert Syst Appl 37(12):7581–7588CrossRefGoogle Scholar
  84. Salmeron JL, Palos-Sanchez PR (2017) Uncertainty propagation in fuzzy grey cognitive maps with Hebbian-like learning algorithms. IEEE Trans CybernGoogle Scholar
  85. Skalna I (2018) Interval arithmetic. Springer International Publishing, Cham, pp 1–24Google Scholar
  86. Stach W, Kurgan LA, Pedrycz W (2008) Numerical and linguistic prediction of time series with the use of fuzzy cognitive maps. IEEE Trans Fuzzy Syst 16(1):61–72CrossRefGoogle Scholar
  87. Stylios CD, Groumpos PP (2004) Modeling complex systems using fuzzy cognitive maps. IEEE Trans Syst Man Cybern Part A Syst Hum 34(1):155–162CrossRefMATHGoogle Scholar
  88. Szczuka M, Jankowski A, Skowron A, Slezak D (2015) Building granular systems—from concepts to applications. In: Rough sets, fuzzy sets, data mining, and granular computing. Springer, pp 245–255Google Scholar
  89. Wagner C, Miller S, Garibaldi JM, Anderson DT, Havens TC (2015) From interval-valued data to general type-2 fuzzy sets. IEEE Trans Fuzzy Syst 23(2):248–269CrossRefGoogle Scholar
  90. Wang G (2017) DGCC: data-driven granular cognitive computing. Granul Comput 2(4):343–355CrossRefGoogle Scholar
  91. Wang G, Yang J, Xu J (2017) Granular computing: from granularity optimization to multi-granularity joint problem solving. Granul Comput 2(3):105–120CrossRefGoogle Scholar
  92. Wilson DR, Martinez TR (1997) Improved heterogeneous distance functions. J Artif Intell Res 6(1):1–34MathSciNetMATHGoogle Scholar
  93. Witten IH, Frank E, Hall M, Pal C (2017) Data mining: practical machine learning tools and techniques, 4th edn. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  94. Xu W, Li W, Zhang X (2017) Generalized multigranulation rough sets and optimal granularity selection. Granul Comput 2(4):271–288CrossRefGoogle Scholar
  95. Yao Y (2011) The superiority of three-way decisions in probabilistic rough set models. Inf Sci 181(1):1080–1096MathSciNetCrossRefMATHGoogle Scholar
  96. Yesil E, Dodurka MF, Urbas L (2014) Triangular fuzzy number representation of relations in fuzzy cognitive maps. In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1021–1028Google Scholar
  97. Zadeh L (1965) Fuzzy sets. Inf Control 8(338–353):65–75MATHGoogle Scholar
  98. Zhu X, Pedrycz W, Li Z (2016) Granular description of data: Building information granules with the aid of the principle of justifiable granularity. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 969–976Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research and Engineering Division, Larus Technologies Corporation and School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada
  2. 2.Faculty of Business EconomicsUniversiteit HasseltDiepenbeekBelgium
  3. 3.Computer Science DepartmentCentral University of Las VillasSanta ClaraCuba

Personalised recommendations