Skip to main content
Log in

Calibration and Validation from Ground to Airborne and Satellite Level: Joint Application of Time-Synchronous Field Spectroscopy, Drone, Aircraft and Sentinel-2 Imaging

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

Non-invasive investigation of surfaces from drones and manned aircrafts used as camera platforms is a well-established remote-sensing practice. However, cross-comparison of multispectral reflectance from different camera systems across different platforms, locations, and times can be challenging. We investigate reflectance retrieved from Sentinel-2 and two airborne camera systems with respect to the mobile, radiometrically calibrated, two-channel hemispherical-conical field-spectrometer system RoX. This spectrometer system serves in combination with a nine-panel grey scale as ground reference and transfer instrument. In the first step, the ground reference was validated against Sentinel-2 reflectance including atmospheric compensation. Our results suggest significant differences in the uncorrected reflectance from the two airborne sensors with respect to instantaneous calibration across 22 mixed targets. In the second step, those differences were reduced to a median discrepancy below 10% using the proposed in-field empirical line correction method (ELC). Continuous irradiance correction further improved the agreement across the validation targets and achieved a coherent reflectance dataset from all four different sensor systems, from the satellite level to the ground and airborne level, considering the limitations of instrument and in-field handling. NDVI maps created from drone and manned aircraft achieved an agreement around 89% and 95% compared to the satellite after calibration and correction. We consider in-field calibration with additional, continuous down-welling radiance correction of reflectance promising to support fusion of information across four sensors and platforms. Thus, field-spectrometer systems serve as transfer instruments and bridge the gap of information from the satellite down to the ground and airborne scale in future airborne mapping and classification efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Agapiou A, Hadjimitsis D, Sarris A et al (2010) Hyperspectral ground truth data for the detection of buried architectural remains. In: Ioannides M, Fellner D, Georgopoulos A, Hadjimitsis DG (eds) Digital heritage. EuroMed 2010. Lecture notes in computer science, vol 6436. Springer, Berlin, Heidelberg, pp 318–331. https://doi.org/10.1007/978-3-642-16873-4_24

  • Al-Rawabdeh A, Moussa A, Foroutan M et al (2017) Time series UAV image-based point clouds for landslide progression evaluation applications. Sensors (Switzerland). https://doi.org/10.3390/s17102378

  • Ariza A, Robredo Irizar M, Bayer S (2018) Empirical line model for the atmospheric correction of sentinel-2A MSI images in the Caribbean Islands. Eur J Remote Sens 51:765–776. https://doi.org/10.1080/22797254.2018.1482732

    Article  Google Scholar 

  • Baetens L, Desjardins C, Hagolle O (2019) Validation of copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sens 11:433. https://doi.org/10.3390/rs11040433

    Article  Google Scholar 

  • Baeumker M, Przybilla H-J, Bäumker M et al (2020) RTK and PPK: GNSS-technologies for direct georeferencing of UAV image flights. In: FIG working week 2020 smart surveyors for land and water management, Amsterdam, The Netherlands, 10–14 May

  • Ball CP, Marks AA, Green PD et al (2015) Hemispherical-directional reflectance (HDRF) of windblown snow-covered arctic tundra at large solar zenith angles. IEEE Trans Geosci Remote Sens 53:5377–5387. https://doi.org/10.1109/TGRS.2015.2421733

    Article  Google Scholar 

  • Berni JAJ, Zarco-Tejada PJ, Suárez L, Fereres E (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens 47:722–738. https://doi.org/10.1109/TGRS.2008.2010457

    Article  Google Scholar 

  • Bioucas-Dias JM, Plaza A, Camps-Valls G et al (2013) Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens Mag 1:6–36. https://doi.org/10.1109/MGRS.2013.2244672

    Article  Google Scholar 

  • Burkart A, Schickling A, Mateo MPC et al (2015) A method for uncertainty assessment of passive sun-induced chlorophyll fluorescence retrieval using an infrared reference light. IEEE Sens J. https://doi.org/10.1109/JSEN.2015.2422894

  • Caballero I, Fernández R, Escalante OM et al (2020) New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-65600-1

    Article  Google Scholar 

  • Cogliati S, Rossini M, Julitta T et al (2015) Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems. Remote Sens Environ 164:270–281. https://doi.org/10.1016/j.rse.2015.03.027

    Article  Google Scholar 

  • Congedo L (2021) Semi-automatic classification plugin: a python tool for the download and processing of remote sensing images in QGIS. J Open Source Softw 6:3172. https://doi.org/10.21105/joss.03172

  • D’Odorico P, Gonsamo A, Damm A, Schaepman ME (2013) Experimental evaluation of sentinel-2 spectral response functions for NDVI time-series continuity. IEEE Trans Geosci Remote Sens 51:1336–1348. https://doi.org/10.1109/TGRS.2012.2235447

    Article  Google Scholar 

  • Damm A, Guanter L, Verhoef W et al (2015) Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sens Environ. https://doi.org/10.1016/j.rse.2014.09.031

    Article  Google Scholar 

  • Drusch M, Del Bello U, Carlier S et al (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36. https://doi.org/10.1016/j.rse.2011.11.026

    Article  Google Scholar 

  • Feilhauer H, Thonfeld F, Faude U et al (2012) Assessing floristic composition with multispectral sensors—a comparison based: on monotemporal and multiseasonal field spectra. Int J Appl Earth Obs Geoinf 21:218–229. https://doi.org/10.1016/j.jag.2012.09.002

    Article  Google Scholar 

  • Gao B-C, Goetz AFH, Wiscombe WJ (1993) Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 um water vapor band. Geophys Res Lett 20:301–304

    Article  Google Scholar 

  • Gilabert MA, Meliá J (1993) Solar angle and sky light effects on ground reflectance measurements in a citrus canopy. Remote Sens Environ 45:281–293. https://doi.org/10.1016/0034-4257(93)90111-A

    Article  Google Scholar 

  • Gómez-Dans JL, Lewis PE, Disney M (2016) Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences. Remote Sens 8:1–32. https://doi.org/10.3390/rs8020119

    Article  Google Scholar 

  • Guo Y, Senthilnath J, Wu W et al (2019) Radiometric calibration for multispectral camera of different imaging conditions mounted on a UAV platform. Sustain. https://doi.org/10.3390/su11040978

  • Guyet T, Nicolas H (2016) Long term analysis of time series of satellite images. Pattern Recognit Lett 70:17–23. https://doi.org/10.1016/j.patrec.2015.11.005

    Article  Google Scholar 

  • Hakala T, Honkavaara E, Saari H et al (2013) Spectral imaging from uavs under varying illumination conditions. Int Arch Photogramm Remote Sens Spat Inf Sci XL-1/W2:189–194. https://doi.org/10.5194/isprsarchives-xl-1-w2-189-2013

  • Hall FG, Hilker T, Coops NC et al (2008) Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction. Remote Sens Environ 112:3201–3211

    Article  Google Scholar 

  • Hank TB, Berger K, Bach H et al (2018) Spaceborne imaging spectroscopy for sustainable agriculture: contributions and challenges. Surv Geophys. https://doi.org/10.1007/s10712-018-9492-0

    Article  Google Scholar 

  • Honkavaara E, Khoramshahi E (2018) Radiometric correction of close-range spectral image blocks captured using an unmanned aerial vehicle with a radiometric block adjustment. Remote Sens 10:256. https://doi.org/10.3390/rs10020256

    Article  Google Scholar 

  • Honkavaara E, Saari H, Kaivosoja J et al (2013) Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sens 5:5006–5039. https://doi.org/10.3390/rs5105006

    Article  Google Scholar 

  • Hueni A, Bialek A (2017) Cause, effect, and correction of field spectroradiometer interchannel radiometric steps. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1542–1551. https://doi.org/10.1109/JSTARS.2016.2625043

    Article  Google Scholar 

  • Hueni A, Damm A, Kneubuehler M et al (2017) Field and airborne spectroscopy cross validation-some considerations. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1117–1135. https://doi.org/10.1109/JSTARS.2016.2593984

    Article  Google Scholar 

  • Imran HA, Gianelle D, Scotton M et al (2021) Potential and limitations of grasslands α-diversity prediction using fine-scale hyperspectral imagery. Remote Sens 13:2649. https://doi.org/10.3390/rs13142649

    Article  Google Scholar 

  • Inamdar D, Kalacska M, Leblanc G, Arroyo-Mora JP (2020) Characterizing and mitigating sensor generated spatial correlations in airborne hyperspectral imaging data. Remote Sens. https://doi.org/10.3390/rs12040641

  • Jenal A, Weber I, Kneer C, Bongartz J (2015) Der Tragschrauber als Sensorplattform für die Fernerkundung. In: Dreiländertagung der DGPF, der OVG und der SGPF in Bern, Schweiz—Publikationen der DGPF, Band 25

  • Karpouzli E, Malthus T (2003) The empirical line method for the atmospheric correction of IKONOS imagery. Int J Remote Sens 24:1143–1150. https://doi.org/10.1080/0143116021000026779

    Article  Google Scholar 

  • Kimes DS, Kirchner JA, Newcomb WW (1983) Spectral radiance errors in remote sensing ground studies due to nearby objects. Appl Opt 22:1

    Article  Google Scholar 

  • Klein J, Brauers J, Aach T (2011) Methods for spectral characterization of multispectral cameras. In: Electronic imaging: digital photography VII. SPIE, San Francisco, CA, USA

  • Kneer C, Jenal A, Weber I, Bongartz J (2016) Ein adaptives und kompaktes Fernerkundungssystem für UL-Fluggeräte-Konzept und Anwendungen. In: Dreiländertagung der DGPF, der OVG und der SGPF in Bern, Schweiz—Publikationen der DGPF, Band 25

  • Kokhanovsky A, Di Mauro B, Garzonio R, Colombo R (2021) Retrieval of dust properties from spectral snow reflectance measurements. Front Environ Sci. https://doi.org/10.3389/fenvs.2021.644551

    Article  Google Scholar 

  • Li Y, Chen J, Ma Q et al (2018) Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America. IEEE J Sel Top Appl Earth Obs Remote Sens 11:1997–2021. https://doi.org/10.1109/JSTARS.2018.2835823

    Article  Google Scholar 

  • Liu X, Liu L (2018) Influence of the canopy BRDF characteristics and illumination conditions on the retrieval of solar-induced chlorophyll fluorescence. Int J Remote Sens. https://doi.org/10.1080/01431161.2017.1404165

    Article  Google Scholar 

  • Maier PM, Keller S, Hinz S (2021) Deep learning with wasi simulation data for estimating chlorophyll a concentration of inland water bodies. Remote Sens 13:1–27. https://doi.org/10.3390/rs13040718

    Article  Google Scholar 

  • Mamaghani B, Salvaggio C (2019) Multispectral sensor calibration and characterization for sUAS remote sensing. Sensors (Switzerland). https://doi.org/10.3390/s19204453

  • Mihai L, Mac AA, Hueni A et al (2018) Optimized spectrometers characterization procedure for near ground support of ESA FLEX observations: part 1 spectral calibration and characterisation. Remote Sens. https://doi.org/10.3390/rs10020289

    Article  Google Scholar 

  • Milton EJ, Schaepman ME, Anderson K, Fox N (2007) Progress in field spectroscopy. Remote Sens Environ 113:S92–S109. https://doi.org/10.1016/j.rse.2007.08.001

    Article  Google Scholar 

  • Moharana S, Dutta S (2014) Hyperspectral remote sensing of paddy crop using in-situ measurement and clustering technique. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS archives. International Society for Photogrammetry and Remote Sensing, pp 845–851

  • Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114:358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009

    Article  Google Scholar 

  • Naethe P, Delaney M, Julitta T (2020) Changes of NOx in urban air detected with monitoring VIS-NIR field spectrometer during the coronavirus pandemic: a case study in Germany. Sci Total Environ 748:141286. https://doi.org/10.1016/j.scitotenv.2020.141286

  • Olsson P-O, Vivekar A, Adler K et al (2021) Radiometric correction of multispectral UAS images: evaluating the accuracy of the parrot sequoia camera and sunshine sensor. Remote Sens 13:577. https://doi.org/10.3390/rs13040577

    Article  Google Scholar 

  • Oxoli D, Brovelli MA, Frizzi D, Martinati S (2020) Detection of land cover displacements through time-series analysis of multispectral satellite imagery: application to desert. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS archives. International Society for Photogrammetry and Remote Sensing, pp 739–744

  • Petitjean F, Weber J (2014) Efficient satellite image time series analysis under time warping. IEEE Geosci Remote Sens Lett 11:1143–1147. https://doi.org/10.1109/LGRS.2013.2288358

    Article  Google Scholar 

  • Picard G, Libois Q, Arnaud L et al (2016) Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series. Cryosphere 10:1297–1316. https://doi.org/10.5194/tc-10-1297-2016

    Article  Google Scholar 

  • Pompilio L, Pepe M, Pedrazzi G, Marinangeli L (2014) Informational clustering of hyperspectral data. IEEE J Sel Top Appl Earth Obs Remote Sens 7:2209–2223. https://doi.org/10.1109/JSTARS.2013.2294053

    Article  Google Scholar 

  • Pompilio L, Marinangeli L, Amitrano L et al (2018) Application of the empirical line method (ELM) to calibrate the airborne Daedalus-CZCS scanner. Eur J Remote Sens 51:33–46. https://doi.org/10.1080/22797254.2017.1399087

    Article  Google Scholar 

  • Rejichi S, Chaabane F (2015) Satellite image time series classification and analysis using an adapted graph labeling. In: 2015 8th international workshop on the analysis of multitemporal remote sensing images, multi-temp 2015. Institute of Electrical and Electronics Engineers Inc

  • Richter R, Schläpfer D (2002) Geo-atmospheric processing of airborne imaging spectrometry data part 2: atmospheric/topographic correction. Int J Remote Sens. https://doi.org/10.1080/01431160110115834

  • Rollin EM, Emery DR, Milton EJ (2000) Reference panel anisotropy and diffuse radiation—some implications for field spectroscopy. Int J Remote Sens 21:2799–2810. https://doi.org/10.1080/01431160050121258

    Article  Google Scholar 

  • Schaepman ME, Dangel S (2000) Solid laboratory calibration of a nonimaging spectroradiometer. Appl Opt 39:3754–3764. https://doi.org/10.1364/AO.39.003754

    Article  Google Scholar 

  • Schläpfer D, Richter R (2002) Geo-atmospheric processing of airborne imaging spectrometry data part 1: parametric orthorectification. Int J Remote Sens. https://doi.org/10.1080/01431160110115825

  • Schläpfer D, Popp C, Richter R (2020a) Drone data atmospheric correction concept for multi-and hyperspectral imagery—the droacor model. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS archives. International Society for Photogrammetry and Remote Sensing, pp 473–478

  • Schläpfer D, Richter R, Reinartz P (2020b) Elevation-dependent removal of cirrus clouds in satellite imagery. Remote Sens. https://doi.org/10.3390/rs12030494

  • Schmidtlein S, Zimmermann P, Schüpferling R, Weiß C (2007) Mapping the floristic continuum: ordination space position estimated from imaging spectroscopy. J Veg Sci 18:131–140

    Article  Google Scholar 

  • Schmitt M, Zhu XX (2016) Data fusion and remote sensing: an ever-growing relationship. IEEE Geosci Remote Sens Mag. https://doi.org/10.1109/MGRS.2016.2561021

    Article  Google Scholar 

  • Schneider P, Castell N, Vogt M et al (2017) Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ Int 106:234–247. https://doi.org/10.1016/j.envint.2017.05.005

    Article  Google Scholar 

  • Shi P, Castaldi F, Van Wesemael B, Van Oost K (2020) Large-scale, high-resolution mapping of soil aggregate stability in croplands using APEX hyperspectral imagery. Remote Sens. https://doi.org/10.3390/rs12040666

  • Siegmann B, Alonso L, Celesti M et al (2019) The high-performance airborne imaging spectrometer Hyplant—from raw images to top-of-canopy reflectance and fluorescence products: introduction of an automatized processing chain. Remote Sens 11:2760. https://doi.org/10.3390/rs11232760

    Article  Google Scholar 

  • Singh A, Serbin SP, McNeil BE et al (2015) Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecol Appl 25:2180–2197. https://doi.org/10.1890/14-2098.1

    Article  Google Scholar 

  • Slater PN, Biggar SF, Holm RG et al (1987) Reflectance-and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sens Environ 22:11–37

    Article  Google Scholar 

  • Smith G, Thomson A, Möller I, Kromkamp J (2003) Hyperspectral imaging for mapping sediment characteristics. In: Habermeyer MMAHS (ed) 3rd EARSeL workshop on imaging spectroscopy, 13–16th May 2003. Herrsching, pp 439–446

  • Spyrakos E, O’Donnell R, Hunter PD et al (2018) Optical types of inland and coastal waters. Limnol Oceanogr 63:846–870. https://doi.org/10.1002/lno.10674

    Article  Google Scholar 

  • Stow D, Nichol CJ, Wade T et al (2019) Illumination geometry and flying height influence surface reflectance and ndvi derived from multispectral UAS imagery. Drones 3:1–28. https://doi.org/10.3390/drones3030055

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  • Turner D, Lucieer A, De Jong SM (2015) Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens 7:1736–1757. https://doi.org/10.3390/rs70201736

    Article  Google Scholar 

  • Vanderbilt VC, Ambrosia VG, Ustin SL (1998) Diurnal reflectance changes in vegetation observed with AVIRIS. In: Green RO (ed) Summaries of the seventh JPL airborne earth science workshop January 12–16, 1998. Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA United States, pp 399–408

  • Viscarra Rossel RA, Behrens T, Ben-Dor E et al (2016) A global spectral library to characterize the world’s soil. Earth Sci Rev 155:198–230

    Article  Google Scholar 

  • Vogtli M, Schlapfer D, Richter R et al (2021) About the transferability of topographic correction methods from spaceborne to airborne optical data. IEEE J Sel Top Appl Earth Obs Remote Sens 14:1348–1362. https://doi.org/10.1109/JSTARS.2020.3039327

    Article  Google Scholar 

  • Von Bueren SK, Burkart A, Hueni A et al (2015) Deploying four optical UAV-based sensors over grassland: challenges and limitations. Biogeosciences 12:163–175. https://doi.org/10.5194/bg-12-163-2015

    Article  Google Scholar 

  • Wagner A, Hilgert S, Kattenborn T, Fuchs S (2018) Proximal VIS-NIR spectrometry to retrieve substance concentrations in surface waters using partial least squares modelling. Water Sci Technol Water Supply. https://doi.org/10.2166/ws.2018.177

    Article  Google Scholar 

  • Wang C, Myint SW (2015) A simplified empirical line method of radiometric calibration for small unmanned aircraft systems-based remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 8:1876–1885. https://doi.org/10.1109/JSTARS.2015.2422716

    Article  Google Scholar 

  • Weber I, Jenal A, Kneer C, Bongartz J (2015a) Gyrocopter-based remote sensing platform. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS archives. International Society for Photogrammetry and Remote Sensing, pp 1333–1337

  • Weber I, Jenal A, Kneer C, Bongartz J (2015b) PANTIR—a dual camera setup for precise georeferencing and mosaicing of thermal aerial images. In: International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS archives. International Society for Photogrammetry and Remote Sensing, pp 269–272

  • Wen J, Köhler P, Duveiller G et al (2020) A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution solar-induced chlorophyll fluorescence (SIF). Remote Sens Environ. https://doi.org/10.1016/j.rse.2020.111644

  • Westoby MJ, Brasington J, Glasser NF et al (2012) “Structure-from-motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  Google Scholar 

  • Yao X, Yao X, Jia W et al (2013) Comparison and intercalibration of vegetation indices from different sensors for monitoring above-ground plant nitrogen uptake in winter wheat. Sensors (switzerland) 13:3109–3130. https://doi.org/10.3390/s130303109

    Article  Google Scholar 

  • Zhao Y, Yuan Y, Wang Q (2019) Fast spectral clustering for unsupervised hyperspectral image classification. Remote Sens. https://doi.org/10.3390/rs11040399

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Katharina Fricke, Svenja Wick, and Laura Giese for supporting the project. 

Funding

This work was supported in part by the Federal Ministry of Transport and Digital Infrastructure through the joint research project “mDRONES4rivers” in mFUND—BMVI (19F2054A-D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Naethe.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naethe, P., Asgari, M., Kneer, C. et al. Calibration and Validation from Ground to Airborne and Satellite Level: Joint Application of Time-Synchronous Field Spectroscopy, Drone, Aircraft and Sentinel-2 Imaging. PFG 91, 43–58 (2023). https://doi.org/10.1007/s41064-022-00231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-022-00231-x

Keywords

Navigation