Skip to main content

Advertisement

Log in

Crop Height Monitoring Using a Consumer-Grade Camera and UAV Technology

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

Recent advances in the ability to capture high spatial resolution images by unmanned aerial vehicles (UAVs) have shown the potential of this technology for a wide range of application including exploring the effects of different external stimuli when monitoring environmental and structural variables. In this paper, we show the application of UAV technology for crop height monitoring and modelling to provide quantitative crop growth data and demonstrate the remote sensing and photogrammetric capabilities of the technology to the farming industry. This study was carried out in a field trial involving a combination of six wheat varieties and three different fungicide treatments. The UAV imagery of the field trial site was captured on five occasions throughout crop development. These were used to create digital surface models from which crop surface models (CSMs) were extracted for the cropped areas. Crop heights are estimated from the photogrammetric derived CSMs and are compared against the reference heights captured using Real-Time Kinematic Global Navigation Satellite System (GNSS) to validate the CSMs. Furthermore, crop growth differences among varieties are analysed; and crop height correlations with grain yield as well as with independently estimated vegetation indices are evaluated. These evaluations show that the technology is suitable (with average bias range 2–10 cm depending on wind conditions relative to GNSS height) and has potential for quantitative and qualitative monitoring of canopy and/or crop height and growth.

Zusammenfassung

Überwachung von Getreidehöhen mit einer handelsüblichen Kamera und UAV Technologie. Jüngste Fortschritte bei der Erfassung von Bildern mit hoher Auflösung durch unbemannte Luftfahrzeuge (Unmanned Aerial Vehicles, UAV) haben das Potenzial dieser Technologie für einen breiten Anwendungsbereich aufgezeigt, einschließlich der Untersuchung der Auswirkungen verschiedener externer Reize bei der Überwachung von Umgebungs- und Strukturvariablen. In diesem Artikel zeigen wir die Anwendung der UAV-Technologie zur Überwachung und Modellierung von Getreidehöhen, um quantitative Getreidewachstumshöhen bereitzustellen und die Fernerkundungs- und photogrammetrische Fähigkeiten der Technologie für die Landwirtschaft zu demonstrieren. Diese Studie wurde in einem Feldversuch mit einer Kombination von sechs Weizensorten und drei verschiedenen Pilzbehandlungen durchgeführt. Die UAV-Bilder des Feldversuchsgeländes wurden während der gesamten Ernteentwicklung fünfmal aufgenommen. Diese Bilder wurden verwendet, um digitale Oberflächenmodelle (Digital Surface Models - DSMs) zu erstellen, aus denen Getreideoberflächenmodelle (Crop Surface Models - CSMs) für die Versuchsflächen extrahiert wurden. Die Erntehöhen werden aus den photogrammetrisch abgeleiteten CSMs geschätzt und mit den Referenzhöhen verglichen, die mit dem Global Navigation Satellite System (GNSS) mit Real-Time Kinematic (RTK) zur Validierung der CSMs erfasst wurden. Darüber hinaus werden Unterschiede im Pflanzenwachstum zwischen den Sorten analysiert und die Korrelation der Getreidehöhe mit dem Getreideertrag sowie mit unabhängig geschätzten Vegetationsindizes ausgewertet. Diese Auswertungen zeigen, dass die Technologie geeignet ist (mit einem durchschnittlichen Bias-Bereich von 2 bis 10 cm in Abhängigkeit von den Windverhältnissen in Bezug auf die GNSS-Höhe) und das Potenzial zur quantitativen und qualitativen Überwachung der Getreidehöhe und des Wachstums vorhanden ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbasi M, Darvishsefat AA, Schaepman ME (2010) Spectral reflectance of rice canopy and Red Edge Position (REP) as indicator of high-yielding variety. ISPRS Arch XXXVIII-B7:1–5

    Google Scholar 

  • Anthony D, Elbaum S, Lorenz A, Detweiler C (2014) On crop height estimation with UAVs. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS 2014), pp 4805–4812

  • Batzdorfer S, Bobbe M, Becker M, Harms H, Bestmann U (2017) Multisensor equipped UAV/UGV for automated exploration. ISPRS Arch XLII-2/W6:33–40

    Google Scholar 

  • Bendig J, Bolten A, Bareth G (2013) UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogrammetrie-Fernerkundung-Geoinformation 2013/6:551–562

    Article  Google Scholar 

  • Boon MA, Drijfhout AP, Tesfamichael S (2017) Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: a case study. ISPRS Arch XLII-2/W6:47–54

    Google Scholar 

  • Candare RJ, Japitana M, Cubillas JE, Ramirez CB (2016) Mapping of high value crops through an object-based SVM model using lidar data and orthophoto in Agusan del Norte Philippines. ISPRS Annu III-7:165–172

    Google Scholar 

  • Chiabrando F, Losè LT (2017) Performance evaluation of COTS UAV for architectural heritage documentation. A test on S. Giuliano chapel in Savigliano (CN)–Italy. ISPRS Arch XLII-2/W6:77–84

    Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97

    Article  Google Scholar 

  • Duarte D, Nex F, Kerle N, Vosselman G (2017) Towards a more efficient detection of earthquake induced façade damages using oblique UAV imagery. ISPRS Arch XLII-2/W6:93–100

    Google Scholar 

  • Eisenbeiss H (2008) UAV photogrammetry in plant sciences and geology. In: 6th ARIDA workshop on innovations in 3D measurement, modeling and visualization, Povo (Trento), Italy

  • Geipel J, Link J, Claupein W (2014) Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens 6(11):10335–10355

    Article  Google Scholar 

  • Goyne PJ, Meinke H, Milroy SP, Hammer GL, Hare JM (1996) Development and use of a barley crop simulation model to evaluate production management strategies in north-eastern Australia. Aust J Agric Res 47(7):997–1015

    Article  Google Scholar 

  • Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V, Bonfi JD (2010) Utilising the VENµS Red Edge bands for assessing LAI in crop fields. ISPRS Arch XXXVIII-4-8-2-W9:34–39

    Google Scholar 

  • Hese S, Behrendt F (2017) Multiseasonal tree crown structure mapping with point clouds from OTS quadrocopter systems. ISPRS Arch XLII-2/W6:141–143

    Google Scholar 

  • Kraus K (2007) Photogrammetry: geometry from images and laser scans. In: Walter de Gruyter (1807), ASIN: B01FIZ8L6G, p 459

  • Laudien R, Bareth G (2006) Multitemporal hyperspectral data analysis for regional detection of plant diseases by using a tractor-and an airborne-based spectrometer. Photogrammetrie Fernerkundung Geoinformation 2006(3):217–227

    Google Scholar 

  • Maurer M, Hofer M, Fraundorfer F, Bischof H (2017) Automated inspection of power line corridors to measure vegetation undercut using UAV-based images. ISPRS Annu IV-2/W3:33–40

    Google Scholar 

  • Mostafa MR (2017) Accuracy assessment of professional grade unmanned systems for high precision airborne mapping. ISPRS Arch XLII-2/W6:257–261

    Google Scholar 

  • Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114(4):358–371

    Article  Google Scholar 

  • Nebiker S, Lack N, Abächerli M, Läderach S (2016) Light-weight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases. ISPRS Arch XLI-B1:963–970

    Google Scholar 

  • Rehak M, Skaloud J (2017) Performance assessment of integrated sensor orientation with a low-cost GNSS receiver. ISPRS Annu IV-2/W3:75–80

    Google Scholar 

  • Shi S, Gong W, Du L, Sun J, Yang J (2016) Potential application of novel hyperspectral lidar for monitoring crops nitrogen stress. ISPRS Arch XLI-B8:1043–1047

    Google Scholar 

  • Sona G, Passoni D, Pinto L, Pagliari D, Masseroni D, Ortuani B, Facchi A (2016) UAV multispectral survey to map soil and crop for precision farming applications. ISPRS Arch XLI-B1:1023–1029

    Google Scholar 

  • Stöcker C, Nex F, Koeva M, Gerke M (2017) Quality assessment of combined IMU/GNSS data for direct georeferencing in the context of UAV-based mapping. ISPRS Arch 42 XLII-2/W6:355–361

    Google Scholar 

  • St-Onge B, Vega C, Fournier RA, Hu Y (2008) Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int J Remote Sens 29(11):3343–3364

    Article  Google Scholar 

  • Taddia Y, Corbau C, Zambello E, Russo V, Simeoni U, Russo P, Pellegrinelli A (2017) UAVs to assess the evolution of embryo dunes. ISPRS Arch XLII-2/W6:363–369

    Google Scholar 

  • Wang Y, Liao Q, Yang G, Feng H, Yang X, Yue J (2016) Comparing broad-band and red edge-based spectral vegetation indices to estimate nitrogen concentration of crops using casi data. ISPRS Arch XLI-B7:137–143

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support provided by Grains Research and Development Corporation (GRDC) for funding the field trial and the purchase of the required equipment. Additionally, we thank Adam Technology (specifically, Jason Birch) and Autonomous Imaging Technology (specifically, Nigel Brown) for their support throughout the project. The authors also thank the anonymous reviewers and the editor for their constructive comments which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Helmholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belton, D., Helmholz, P., Long, J. et al. Crop Height Monitoring Using a Consumer-Grade Camera and UAV Technology. PFG 87, 249–262 (2019). https://doi.org/10.1007/s41064-019-00087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-019-00087-8

Keywords

Navigation