Skip to main content
Log in

Detection of Phenology-Defined Data Acquisition Time Frames For Crop Type Mapping

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

Agricultural monitoring and assessment based on satellite data increasingly gains importance due to the growing number of available satellite sensors with high geometric and temporal resolution. Such tasks often require multiple images acquired on specific dates that among others account for inter-annual phenological variations to provide accurate results. This contribution presents an approach that links peaks of spectral separability profiles to crop phenological phases. The phases are spatially interpolated using a phenological model and ground observations. The profiles show the respective temporal development of the F-measure which is used as indicator for class-wise separability. It originates from binary classifications of vegetation indices computed for each set of a satellite data archive covering multiple years. Acquisition dates, which repeatedly show a separability maximum define phenological indicator phases. Potential alternative phases can be also defined. Experiments based on multi-temporal RapidEye satellite imagery were performed for three crops at two German test sites under different environmental conditions. The results showed that the phases yellow ripeness, heading and flowering can function as indicator phases for high spectral separability of winter barley, winter wheat and winter rapeseed. We could identify at least two identical, stable indicator phases per crop type for both test sites, which suggests the transferability and robustness of the presented approach.

Zusammenfassung

Detektion von phänologisch definierten Datenaufnahmezeiträumen für die Klassifikation von Feldfrüchten Auf Satellitendaten basierendes landwirtschaftliches Monitoring gewinnt durch die wachsende Anzahl verfügbarer Sensoren mit hoher zeitlicher und geometrischer Auflösung zunehmend an Bedeutung. Für solche Anwendungen werden oftmals Satellitendaten von verschiedenen Aufnahmetagen benötigt, deren Auswahl inter-annuelle phänologische Variationen berücksichtigen muss, um exakte Ergebnisse zu liefern. Dieser Beitrag präsentiert einen Ansatz, um Maxima von spektralen Trennbarkeitsprofilen mit phänologischen Phasen von Feldfrüchten zu verbinden. Diese Phasen werden unter Nutzung eines phänologischen Modelles und Beobachtungsdaten räumlich interpoliert. Die Trennbarkeitsprofile zeigen den zeitlichen Verlauf des F-Maß, das als Indikator für klassenspezifische Trennbarkeit genutzt wird. Dieses stammt von binär klassifizierten Vegetationsindizes, die für jeden Datensatz einer mehrjährigen, multi-temporalen Zeitserie von Satellitenbilddatensätzen berechnet wurden. Zeitpunkte, während denen wiederholt das Trennbarkeitsmaximum beobachtet werden konnte, weisen die Indikatorphasen aus. Potentielle Alternativphasen können ebenso bestimmt werden. Die Untersuchungen wurden für drei Fruchtarten in zwei Untersuchungsgebieten in Deutschland unter verschiedenen Umweltbedingungen auf Basis von RapidEye-Satellitendaten durchgeführt. Die Ergebnisse zeigen, dass die Phasen Gelbreife, Ährenschieben und Blüte als Indikatoren für hohe spektrale Trennbarkeit von Wintergerste, Winterweizen und Winterraps dienen können. Für jede untersuchte Fruchtart konnten wenigstens zwei, für beide Untersuchungsgebiete übereinstimmende, stabile Indikatorphasen ausgewiesen werden, was die Übertragbarkeit und Robustheit des gezeigten Verfahrens belegt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany.

  2. http://phase.geo.uni-halle.de/phase-wms-dienste.

  3. http://www.geoserver.org.

  4. http://www.drupal.org.

References

  • Azar R, Villa P, Stroppiana D, Crema A, Boschetti M, Brivio PA (2016) Assessing in-season crop classification performance using satellite data: a test case in Northern Italy. Eur J Remote Sens 49(1):361–380

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65(1):2–16

    Article  Google Scholar 

  • Bogena HR (2016) Tereno: German network of terrestrial environmental observatories. J Large-scale Res Facil JLSRF 2:52

    Article  Google Scholar 

  • Borg E, Daedelow H, Apel M, Missling KD (2013) Rapideye science archive: Remote sensing data for the German scientific community. In: Borg E, Daedelow H, Johnson R (eds) RESA, GITO mbH Verlag, Berlin, RESA Workshop, Neustrelitz, vol 3, pp 5–20. http://elib.dlr.de/81718/

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Buschmann C, Nagel E (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int J Remote Sens 14(4):711–722. https://doi.org/10.1080/01431169308904370

    Article  Google Scholar 

  • Conrad C, Rahmann M, Machwitz M, Stulina G, Paeth H, Dech S (2013) Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in fergana valley, uzbekistan. Glob Planet Change 110:88–98

    Article  Google Scholar 

  • Conrad C, Dech S, Dubovyk O, Fritsch S, Klein D, Löw F, Schorcht G, Zeidler J (2014) Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Comput Electron Agric 103:63–74

    Article  Google Scholar 

  • De Wit A, Clevers J (2004) Efficiency and accuracy of per-field classification for operational crop mapping. Int J Remote Sens 25(20):4091–4112

    Article  Google Scholar 

  • DWD Climate Data Center (2017a) Historical daily station observations (temperature, pressure, precipitation, sunshine duration, etc.) for Germany, version v005

  • DWD Climate Data Center (2017b) Multi-annual means of grids of air temperature (2m) over Germany, 1981-2010, version v1.0

  • DWD Climate Data Center (2017c) Phenological observations of crops from sowing to harvest (annual reporters, historical), Version v003

  • Flanagin AJ, Metzger MJ (2008) The credibility of volunteered geographic information. GeoJournal 72(3):137–148. https://doi.org/10.1007/s10708-008-9188-y

    Article  Google Scholar 

  • Forkuor G, Conrad C, Thiel M, Landmann T, Barry B (2015) Evaluating the sequential masking classification approach for improving crop discrimination in the Sudanian Savanna of West Africa. Comput Electron Agric 118(Suppl C):380–389. https://doi.org/10.1016/j.compag.2015.09.020

    Article  Google Scholar 

  • Förster S, Kaden K, Förster M, Itzerott S (2012) Crop type mapping using spectral-temporal profiles and phenological information. Comput Electron Agric 89:30–40

    Article  Google Scholar 

  • Frantz D, Röder A, Stellmes M, Hill J (2017) Phenology-adaptive pixel-based compositing using optical earth observation imagery. Remote Sens Environ 190:331–347

    Article  Google Scholar 

  • Gerstmann H, Doktor D, Gläßer C, Möller M (2016a) PHASE: a geostatistical model for the kriging-based spatial prediction of crop phenology using public phenological and climatological observations. Comput Electron Agric 127:726–738

    Article  Google Scholar 

  • Gerstmann H, Möller M, Gläßer C (2016b) Optimization of spectral indices and long-term separability analysis for classification of cereal crops using multi-spectral RapidEye imagery. Int J Appl Earth Obs Geoinf 52:115–125

    Article  Google Scholar 

  • Gitelson AA (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol 161(2):165–173. https://doi.org/10.1078/0176-1617-01176

    Article  Google Scholar 

  • Gitelson AA, Merzlyak MN (1994) Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. J Photochem Photobiol B 22(3):247–252. https://doi.org/10.1016/1011-1344(93)06963-4

    Article  Google Scholar 

  • Guerschman J, Paruelo J, Bella CD, Giallorenzi M, Pacin F (2003) Land cover classification in the argentine pampas using multi-temporal landsat tm data. Int J Remote Sens 24(17):3381–3402

    Article  Google Scholar 

  • Immitzer M, Vuolo F, Atzberger C (2016) First experience with sentinel-2 data for crop and tree species classifications in central europe. Remote Sens 8(3):166

    Article  Google Scholar 

  • Inan H, Sagris V, Devos W, Milenov P, van Oosterom P, Zevenbergen J (2010) Data model for the collaboration between land administration systems and agricultural land parcel identification systems. J Environ Manag 91(12):2440–2454

    Article  Google Scholar 

  • Kaspar F, Zimmermann K, Polte-Rudolf C (2014) An overview of the phenological observation network and the phenological database of Germany’s national meteorological service (Deutscher Wetterdienst). Adv Sci Res 11:93–99

    Article  Google Scholar 

  • Krauß T, d’Angelo P, Schneider M, Gstaiger V (2013) The fully automatic optical processing system CATENA at DLR. ISPRS Hannover Workshop 1:177–181

    Google Scholar 

  • Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomforest. R News 2(3):18–22. http://CRAN.R-project.org/doc/Rnews/

  • Löw F, Michel U, Dech S, Conrad C (2013) Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS J Photogramm Remote Sens 85:102–119. https://doi.org/10.1016/j.isprsjprs.2013.08.007

    Article  Google Scholar 

  • Löw F, Knöfel P, Conrad C (2015) Analysis of uncertainty in multi-temporal object-based classification. ISPRS J Photogramm Remote Sens 105:91–106. https://doi.org/10.1016/j.isprsjprs.2015.03.004

    Article  Google Scholar 

  • Mehdipoor H, Zurita-Milla R, Rosemartin A, Gerst K, Weltzin J (2015) Developing a workflow to identify inconsistencies in volunteered geographic information: a phenological case study. PLoS One 10(10):1–14

    Article  Google Scholar 

  • Meroni M, Rembold F, Verstraete MM, Gommes R, Schucknecht A, Beye G (2014) Investigating the relationship between the inter-annual variability of satellite-derived vegetation phenology and a proxy of biomass production in the Sahel. Remote Sens 6(6):5868–5884. https://doi.org/10.3390/rs6065868, http://www.mdpi.com/2072-4292/6/6/5868

  • Möller M, Gerstmann H, Feng G, Dahms T, Förster M (2017) Coupling of phenological information and \(NDVI\) time series: limitations and potentials for the assessment and monitoring of soil erosion risk. CATENA 150:192–205

    Article  Google Scholar 

  • Murakami T, Ogawa S, Ishitsuka N, Kumagai K, Saito G (2001) Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. Int J Remote Sens 22(7):1335–1348. https://doi.org/10.1080/01431160151144378

    Article  Google Scholar 

  • Nagol JR, Sexton JO, Kim DH, Anand A, Morton D, Vermote E, Townshend JR (2015) Bidirectional effects in landsat reflectance estimates: is there a problem to solve? ISPRS J Photogramm Remote Sens 103:129–135

    Article  Google Scholar 

  • Nitze I, Barrett B, Cawkwell F (2015) Temporal optimisation of image acquisition for land cover classification with random forest and modis time-series. Int J Appl Earth Obs Geoinf 34:136–146

    Article  Google Scholar 

  • Peña-Barragàn JM, Ngugi MK, Plant RE, Six J (2011) Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens Environ 115(6):1301–1316. https://doi.org/10.1016/j.rse.2011.01.009

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57(4):241–262

    Article  Google Scholar 

  • Richter R, Schläpfer D (2015) Atmospheric/topographic correction for satellite imagery (ATCOR-2/3 User Guide, Version 9.0.0, June 2015). DLR report DLR-IB, pp 565–01

  • Rivera J, Verrelst J, Delegido J, Veroustraete F, Moreno J (2014) On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sens 6(6):4927–4951. https://doi.org/10.3390/rs6064927

    Article  Google Scholar 

  • Rouse J, Jr RH, Schell JA, Deering D (1974) Monitoring vegetation systems in the Great Plains with ERTS, NASA SP-351. In: Third ERTS-1 symposium, vol 1. NASA, Washington, DC, pp 309–317

  • Schmidt T, Schuster C, Kleinschmit B, Förster M (2014) Evaluating an intra-annual time series for grassland classification—how many acquisitions and what seasonal origin are optimal? IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3428–3439

    Article  Google Scholar 

  • Tyc G, Tulip J, Schulten D, Krischke M, Oxfort M (2005) The RapidEye mission design. Acta Astronaut 56(1–2):213–219

    Article  Google Scholar 

  • van Niel TG, McVicar TR (2004) Determining temporal windows for crop discrimination with remote sensing: a case study in south-eastern Australia. Comput Electron Agric 45(1–3):91–108. https://doi.org/10.1016/j.compag.2004.06.003

    Article  Google Scholar 

  • van Rijsbergen C (1979) Information retrival, 2nd edn. Springer, Berlin

    Google Scholar 

  • Whitcraft A, Vermote E, Becker-Reshef I, Justice C (2015) Cloud cover throughout the agricultural growing season: impacts on passive optical earth observations. Remote Sens Environ 156:438–447

    Article  Google Scholar 

  • Xu X, Conrad C, Doktor D (2017) Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging spectrometer (MODIS). Remote Sens 9(3):254. https://doi.org/10.3390/rs9030254

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Ministry of Economics and Energy (BMWi) and the German Aerospace Center (DLR) under grant 50EE1263. The authors want to thank Dr. Daniel Doktor and Xingmei Xu (Helmholtz Centre for Environmental Research—UFZ) for the atmospheric correction of the RapidEye data sets for the Harz study site and Dr. Patrick Knöfel (Julius Maximilians University Würzburg) for organizing the preprocessing of the RapidEye data sets of Demmin. The authors want also express their gratitude to Dr. Erik Borg (German Aerospace Center—DLR) for the preparation and provision of the land use information of the Demmin site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Gerstmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerstmann, H., Gläßer, C., Thürkow, D. et al. Detection of Phenology-Defined Data Acquisition Time Frames For Crop Type Mapping. PFG 86, 15–27 (2018). https://doi.org/10.1007/s41064-018-0043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-018-0043-6

Keywords

Schlagwörter

Navigation