Skip to main content
Log in

Sensor Fusion for Self-Localisation of Automated Vehicles

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

Accurate pose estimation is key for a large number of real world applications. For example, automated cars require fast, recent, accurate, and highly available pose estimates for robust operation. Multiple redundant and complementary localisation systems are therefore installed on most automated vehicles. This work proposes a novel multi-sensor pose fusion approach for generically combining measurements from multiple localisation systems into a single pose estimate. We formulate our approach as a sliding window pose graph and enforce a particular chain graph structure, which enables efficient optimisation and a novel form of marginalisation. Our pose fusion approach scales from a filtering-based to a batch solution by increasing the size of the sliding window. It also adapts online to the available computational resources to guarantee high availability. We evaluate our approach on simulated data as well as on real data gathered with a prototype vehicle and demonstrate that our solution runs at 20 Hz, provides timely estimates, is accurate, and yields high availability.

Zusammenfassung

Sensorfusion für die Positionierung von autonom fahrenden Fahrzeugen. Eine genaue Lokalisierung ist zentral für viele reale Anwendungen. So benötigen beispielsweise automatisierte Autos häufige, aktuelle, präzise und hochverfügbare Schätzungen der Fahrzeugpose. Daher sind auf den meisten automatisierten Fahrzeugen mehrere redundante und komplementäre Ortungssysteme integriert. In diesem Artikel beschreiben wir eine neuartige generische Ortungsfusion zum Zusammenführen der Positionsmessungen von unterschiedlichen Ortungssystemen. Wir konstruieren dazu einen Posengraphen über das Zeitfenster der letzten Odometrie- und Positionsmessungen, so dass der Aufbau des Graphen einer Kettenstruktur entspricht. Diese ermöglicht ein effizientes Optimieren und eine neue Art der Marginalisierung. Unser Ortungsfusionsansatz skaliert von einer filter-basierten bis zur Batch-Lösung durch das Vergrößern des Zeitfensters. Er passt sich außerdem zur Laufzeit an die verfügbaren Rechenressourcen an, um eine hohe Verfügbarkeit der Posenschätzungen zu gewährleisten. Wir evaluieren unseren Ansatz mit Hilfe simulierter und auf einem realen Prototypen aufgezeichneter Daten und zeigen, dass unsere Lösung mit 20 Hz läuft, aktuelle Schätzungen bereitstellt, sowie präzise und hochverfügbar ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agarwal P, Olson E (2012) Variable reordering strategies for SLAM. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3844–3850

  • Agarwal P, Burgard W, Stachniss C (2014a) Helmert’s and Bowie’s geodetic mapping methods and their relation to graph-based SLAM. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). IEEE, pp 3619–3625

  • Agarwal P, Burgard W, Stachniss C (2014b) A survey of geodetic approaches to mapping and the relationship to graph-based SLAM. IEEE Robot Autom Mag 21(3):63–80

    Article  Google Scholar 

  • Barfoot TD (2016) State estimation for robotics: a matrix-Lie-group approach. Draft in preparation for publication by Cambridge University Press, Cambridge

  • Bar-Shalom Y (2002) Update with out-of-sequence measurements in tracking: exact solution. IEEE Trans Aerosp Electron Syst 38(3):769–778

    Article  Google Scholar 

  • Bell B, Cathey F (1993) The iterated Kalman filter update as a Gauss–Newton method. IEEE Trans Autom Control 38(2):294–297

    Article  Google Scholar 

  • Chiu HP, Williams S, Dellaert F, Samarasekera S, Kumar R (2013) Robust vision-aided navigation using sliding-window factor graphs. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 46–53

  • Cucci DA, Matteucci M (2013) A flexible framework for mobile robot pose estimation and multi-sensor self-calibration. In: Proceedings of the international conference on informatics in control, automation and robotics (ICINCO), pp 361–368

  • Golfarelli M, Maio D, Rizzi S (1998) Elastic correction of dead-reckoning errors in map building. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 905–911

  • Hartley R, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Indelman V, Williams S, Kaess M, Dellaert F (2012) Factor graph based incremental smoothing in inertial navigation systems. In: Proceedings of the international conference on information fusion (FUSION), pp 2154–2161

  • Julier SJ, Uhlmann JK (1997) A non-divergent estimation algorithm in the presence of unknown correlations. In: Proceedings of the American control conference (ACC), pp 2369–2373

  • Julier SJ, Uhlmann JK (2007) Using covariance intersection for SLAM. Robot Auton Syst 55(1):3–20

    Article  Google Scholar 

  • Kaess M, Johannsson H, Roberts R, Ila V, Leonard J, Dellaert F (2012) iSAM2: Incremental smoothing and mapping using the Bayes tree. Int J Robot Res 31(2):216–235

    Article  Google Scholar 

  • Kubelka V, Oswald L, Pomerleau F, Colas F, Svoboda T, Reinstein M (2015) Robust data fusion of multimodal sensory information for mobile robots. J Field Robot 32(4):447–473

    Article  Google Scholar 

  • Kümmerle R (2013) State estimation and optimization for mobile robot navigation. Ph.D. dissertation. University of Freiburg

  • Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) g2o: A general framework for graph optimization. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3607–3613

  • Lynen S, Achtelik MW, Weiss S, Chli M, Siegwart R (2013) A robust and modular multi-sensor fusion approach applied to MAV navigation. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3923–3929

  • Merfels C, Stachniss C (2016) Pose fusion with chain pose graphs for automated driving. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3116–3123

  • Merfels C, Riemenschneider T, Stachniss C (2016) Pose fusion with biased and dependent data for automated driving. In: Proceedings of the positioning and navigation for intelligent transportation systems conference (POSNAV). ISSN: 2191-8287

  • Olson E, Leonard J, Teller SJ (2006) Fast iterative alignment of pose graphs with poor initial estimates. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 2262–2269

  • Reinhardt M, Noack B, Hanebeck UD (2012) Closed-form optimization of covariance intersection for low-dimensional matrices. In: Proceedings of the international conference on information fusion (FUSION). IEEE, pp 1891–1896

  • Schlegel S, Korn N, Scheuermann G (2012) On the interpolation of data with normally distributed uncertainty for visualization. IEEE Trans Vis Comput Graph 18(12):2305–2314

    Article  Google Scholar 

  • Sibley G, Matthies L, Sukhatme G (2010) Sliding window filter with application to planetary landing. J Field Robot 27(5):587–608

    Article  Google Scholar 

  • Strasdat H, Montiel J, Davison AJ (2012) Visual SLAM: why filter? Image Vis Comput 30(2):65–77

    Article  Google Scholar 

  • Weiss S, Achtelik MW, Chli M, Siegwart R (2012) Versatile distributed pose estimation and sensor self-calibration for an autonomous MAV. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 31–38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Merfels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merfels, C., Stachniss, C. Sensor Fusion for Self-Localisation of Automated Vehicles. PFG 85, 113–126 (2017). https://doi.org/10.1007/s41064-017-0008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-017-0008-1

Keywords

Navigation