Skip to main content
Log in

Zircon geochronology and geochemistry of the Ward Hunt pluton, Pearya terrane, Canadian High Arctic: Insights into its age, origin, and circum-Arctic Timanide connections

  • Original Article
  • Published:
arktos

Abstract

The northern margin of the Neoproterozoic Timanide Orogen is truncated by Paleozoic deformation of the Caledonian Orogen. Evidence for dispersion of terranes affected by the Timanide Orogen is documented through contemporaneous tectonothermal activity, and by detrital zircon in sedimentary rock from across the Arctic Ocean margins. However, directly tying these terranes to the Caledonide realm is hindered by the paucity of appropriate events in proximal terranes. The Ward Hunt Pluton, a previously undated syenite–monzodiorite intrusion located on Ward Hunt Island, northern Pearya terrane, yields a crystallization age of 542 ± 2 Ma. Trace-element data from the igneous zircon suggest that the pluton intruded older metasedimentary rocks of the terrane as part of a volcanic arc system, indicated by juvenile Hf isotopic signatures and trace-element data. The data support links between the Pearya terrane and other Neoproterozoic–Cambrian arc systems, such as those proposed in Arctic Alaska-Chukota and the Alexander terrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gee DG, Pease V (2004) The Neoproterozoic Timanide Orogen of eastern Baltica. Geol Soc Lond Mem 30:1–3

    Google Scholar 

  2. Pease V, Dovzhikova E, Beliakova L, Gee DG (2004) Late Neoproterozoic granitoid magmatism in the basement to the Pechora Basin, NW Russia: geochemical constrains indicate westward subduction beneath NE Baltica. In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of Eastern Baltica, vol 30. Geological Society of London Memoir, London, pp 75–85

    Google Scholar 

  3. Zonenshain LP, Kuzmin MI, Savostin LA (1990) Geology of the USSR: a plate tectonic synthesis. American Geophysical Union Geodynamics Series, Washington, DC

    Google Scholar 

  4. Kuznetsov NB, Soboleva AA, Udoratina OV, Hertseva MV, Andreichev VL (2007) Pre-Ordovician tectonic evolution and volcano-plutonic associations of the Timanides and northern Pre-Uralides, northeast part of the East European Craton. Gondwana Res 12:305–323

    Google Scholar 

  5. Kuznetsov NB, Natapov LM, Belousova EA, O’Reilly SY, Griffin WL (2010) Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: Implications for plate tectonic models. Gondwana Res 17:583–601

    Google Scholar 

  6. Larinov A, Andraeichev V, Gee D (2004) The Vendian alkaline igneous suite of northern Timan: ion microprobe U/Pb zircon ages of gabbros and syenite. In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of Eastern Baltica, vol 30. Geological Society of London Memoir, London, pp 69–74

    Google Scholar 

  7. Roberts D, Olovyanishnikov V (2004) Structural and tectonic development of the Timanide Orogen. In: Gee DG, Pease V (eds) The Neoproterozoic Timanide Orogen of Eastern Baltica, vol 30. Geological Society of London Memoir, London, pp 47–58

    Google Scholar 

  8. Majka J, Mazur S, Manecki M, Czerny J, Holm D (2008) Late Neoproterozoic amphibolite-facies metamorphism of a pre-Caledonian basement block in Wedel Jarsberg Land, Spitsbergen: new evidence from U–Th–Pb dating of monazite. Geol Mag 145:822–830

    Google Scholar 

  9. Majka J, Larionov AN, Gee DG, Czerny J, Pršek J (2012) Neoproterozoic pegmatite from Skoddefjellet, Wedel Jarlsberg Land, Spitsbergen: additional evidence for c. 640 Ma tectonothermal event in the Caledonides of Svalbard. Pol Polar Res 33:1–17

    Google Scholar 

  10. Majka J, Be’eri-Shlevin Y, Gee DG, Czerny J, Frei D, Ladenberger A (2014) Torellian (c. 640 Ma) metamorphic overprint of Tonian (c. 950 Ma) basement in the Caledonides of southwestern Svalbard. Geol Mag 151:732–748

    Google Scholar 

  11. Manecki M, Holm DK, Czerny J, Lux D (1998) Thermochronological evidence for late Proterozoic (Vendian) cooling in southwest Wedel Jarlsberg Land, Spitsbergen. Geol Mag 135:63–69

    Google Scholar 

  12. Mazur S, Czerny J, Majka J, Manecki M, Holm D, Smyrak A, Wypych A (2009) A strike-slip terrane boundary in Wedel Jarlsberg Land, Svalbard, and its bearing on correlations of SE Spitzbergen with the Pearya terrane and Timanide belt. J Geol Soc 166:529–544

    Google Scholar 

  13. Patrick BE, McClelland WC (1995) Late Proterozoic granitic magmatism on Seward Peninsula and a Barentian origin for Arctic Alaska–Chukotka. Geology 23:81–84

    Google Scholar 

  14. Amato JM, Toro J, Miller EL, Gehrels GE, Farmer GL, Gottlieb ES, Till AB (2009) Late Proterozoic–Paleozoic evolution of the Arctic Alaska–Chukotka terrane based on U–Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions. Geol Soc Am Bull 121:1219–1235

    Google Scholar 

  15. Amato JM, Aleinikoff JN, Akinin VV, McClelland WC, Toro J (2014) Age, chemistry, and correlations of Neoproterozoic-Devonian igneous rocks of the Arctic Alaska-Chukotka terrane: An overview with new U-Pb ages. In: Dumoulin JA, Till AB (eds) Reconstruction of a Late Proterozoic to Devonian continental margin sequence, Northern Alaska, its paleogeographic significance, and contained base-metal sulfide deposits, vol 506. Geological Society of America Special Paper, Washington, DC, pp 111–131

    Google Scholar 

  16. Gehrels GE, Butler RF, Bazard DR (1996) Detrital zircon geochronology of the Alexander terrane, southeastern Alaska. Geol Soc Am Bull 108:722–734

    Google Scholar 

  17. White C, Gehrels GE, Pecha M, Giesler D, Yokelson I, McClelland WC (2016) U-Pb and Hf isotope analysis of detrital zircons from Paleozoic strata of the southern Alexander terrane (southeast Alaska). Lithosphere 8:83–96

    Google Scholar 

  18. Churkin M Jr, Trexler JH Jr (1980) Continental plates and accreted oceanic terranes. In: Nairn AEM, Churkin M Jr, Stehli FG (eds) The ocean basins and margins: the Arctic Ocean. Plenum Press, New York

    Google Scholar 

  19. Trettin HP (1987) Pearya: A composite terrane with Caledonide affinities in northern Ellesmere Island. Can J Earth Sci 24:224–245

    Google Scholar 

  20. Trettin HP (1991) Tectonic framework. In: Trettin HP (ed) Geology of the innuitian orogen and arctic platform of Canada and Greenland, vol 3. Geological Survey of Canada, Geology of Canada, Ottawa, pp 59–66

    Google Scholar 

  21. Trettin HP (1998) Chapter 4: geology of Pearya. In: Trettin HP (ed) Pre-Carboniferous geology of the northern part of the Arctic Islands, vol 425. Geological Survey of Canada Paper, Ottawa, pp 108–192

    Google Scholar 

  22. Malone SJ, McClelland WC, von Gosen W, Piepjohn K (2014) Proterozoic evolution of the North Atlantic–Arctic Caledonides: insights from detrital zircon analysis of metasedimentary rocks from the Pearya Terrane, Canadian High Arctic. J Geol 122:623–648

    Google Scholar 

  23. Malone SJ, McClelland WC, von Gosen W, Piepjohn K (2017) The earliest Neoproterozoic magmatic record of the Pearya terrane, Canadian high Arctic: implications for Caledonian terrane reconstructions. Precambr Res 292:323–349

    Google Scholar 

  24. Malone SJ, McClelland WC, von Gosen W, Piepjohn K (2019) Detrital zircon U–Pb and Lu–Hf analysis of Paleozoic sedimentary rocks from the Pearya terrane and Ellesmerian Fold Belt (northern Ellesmere Island): a comparison with Circum-Arctic datasets and their implications on terrane tectonics. In: Piepjohn K, Strauss JV, Reinhardt L, McClelland WC (eds) Circum-Arctic structural events: tectonic evolution of the arctic margin and trans-Arctic links with adjacent orogens, vol 541. Geological Society of America Special Paper, Washington, DC, pp 231–254

    Google Scholar 

  25. Trettin HP (1991) Silurian-early Carboniferous deformational phases and associated metamorphism and plutonism, Arctic Islands. In: Trettin HP (ed) Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, vol 3. Geological Survey of Canada, Geology of Canada, Ottawa, pp 295–341

    Google Scholar 

  26. Anfinson OA, Leier AL, Gaschnig R, Embry AF, Dewing K (2012) U-Pb and Hf isotopic data from Franklinian Basin strata: insights into the nature of Crockerland and the timing of accretion, Canadian Arctic Islands. Can J Earth Sci 49:1316–1328

    Google Scholar 

  27. Ward WP, McClelland WC, Coble MA, Malone SJ (2015) Timing of deformation and metamorphism in the Pearya terrane from SIMS analysis of monazite and titanite. Geol Soc Am Abstr Progr 47:26–44

    Google Scholar 

  28. Trettin HP, Parrish R, Loveridge WD (1987) U-Pb age determinations of Proterozoic to Devonian rocks from northern Ellesmere Island, Arctic Canada. Can J Earth Sci 24:246–256

    Google Scholar 

  29. Trettin HP (1991) The Proterozoic to late Silurian Record of Pearya. In: Trettin HP (ed) Geology of the innuitian orogen and Arctic platform of Canada and Greenland, vol 3. Geological Survey of Canada, Geology of Canada, Ottawa, pp 241–259

    Google Scholar 

  30. von Gosen W, Piepjohn K, McClelland WC, Läufer A (2012) The Pearya Shear Zone in the Canadian High Arctic: kinematics and significance. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (Ger J Geosci) 163:233–249

    Google Scholar 

  31. Trettin HP, Parrish RR, Roddick JC (1992) New U-Pb and 40Ar-39Ar age determinations from northern Ellesmere and Axel Heiberg islands, Northwest Territories and their tectonic significance. Geol Surv Can Pap 92–2:3–30

    Google Scholar 

  32. Estrada S, Mende K, Gerdes A, Gärtner A, Hofmann M, Spiegel D, Damaske D, Koglina N (2018) Proterozoic to Cretaceous evolution of the western and central Pearya Terrane (Canadian High Arctic). J Geodyn 120:45–76

    Google Scholar 

  33. Trettin HP, Loveridge WD, Sullivan RW (1982) U–Pb ages on zircons from the M’Clintock West massif and the Markham Fiord pluton, northernmost Ellesmere Island. Geol Surv Can Pap 82-1C:161–166

    Google Scholar 

  34. Okulitch AV (1991) Chapter 12. Silurian–Early Carboniferous deformational phases and associated metamorphism and plutonism, Arctic Islands. F. Late Devonian–Early Carboniferous deformation of the Central Ellesmere and Jones Sound fold belts. In: Trettin HP (ed) Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, vol 3. Geological Survey of Canada, Geology of Canada, Ottawa, pp 318–320

    Google Scholar 

  35. Soper NJ, Higgins AK (1991) Deformation (Devonian– Early Carboniferous deformation and metamorphism, North Greenland). In: Trettin HP (ed) Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, vol 3. Geological Survey of Canada, Geology of Canada, Ottawa, pp 283–288

    Google Scholar 

  36. Mayr U, de Freitas T, Beauchamp B, Eisbacher G (1998) The Geology of Devon Island north of 76°, Canadian Arctic Archipelago. Geol Surv Can Bull 526:1–500

    Google Scholar 

  37. Piepjohn K, von Gosen W, Läufer A, McClelland WC, Estrada S (2013) Ellesmerian and Eurekan fault tectonics at the northern margin of Ellesmere Island (Canadian High Arctic). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (Ger J Geosci) 164:81–105

    Google Scholar 

  38. Piepjohn K, von Gosen W, Tessensohn F, Reinhardt L, McClelland WC, Dallmann W, Gaedicke C, Harrison JC (2015) Tectonic map of the Ellesmerian and Eurekan deformation belts on Svalbard, North Greenland, and the Queen Elizabeth Islands (Canadian Arctic). Arktos 1:1–12

    Google Scholar 

  39. Frisch T (1974) Metamorphic and plutonic rocks of northernmost Ellesmere Island, Canadian Arctic Archipelago. Geol Surv Can Bull 229:1–87

    Google Scholar 

  40. Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 227:149–159

    Google Scholar 

  41. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140

    Google Scholar 

  42. Mattinson JM (2010) Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon sample. Chem Geol 275:186–198

    Google Scholar 

  43. Coble MA, Vasquez JA, Barth AP, Wooden J, Burns D, Kylander-Clark A, Jackson S, Vennari CE (2018) Trace element characterisation of MAD-559 zircon reference material for ion microprobe analysis. Geostand Geoanal Res. https://doi.org/10.1111/ggr.12238

    Article  Google Scholar 

  44. Ludwig KR (2005) Squid version 1.13b: a user’s manual. Berkley Geochronol Cent Spec Publ 2:1–22

    Google Scholar 

  45. Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkley Geochronol Cent Spec Publ 4:1–70

    Google Scholar 

  46. Gehrels GE, Valencia V, Pullen A (2006) Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona Laserchron Center. Paleontol Soc Pap 12:67–76

    Google Scholar 

  47. Gehrels GE, Valencia VA, Ruiz J (2008) Enhanced precision, accuracy, efficiency and spatial resolution of U–Pb ages by laser ablation-multicollecter-inductively coupled plasma-mass spectrometry. Geochem Geophys Geosyst 9:1–13

    Google Scholar 

  48. Cecil MR, Gehrels G, Ducea MN, Patchett PJ (2011) U–Pb–Hf characterization of the central Coast Mountains batholith: implications for petrogenesis and crustal architecture. Lithosphere 3:247–260

    Google Scholar 

  49. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In Hanchar JM, Hoskin PW (eds) Zircon. Reviews in minerology and geochemistry 53:27–62

  50. Griffin WL, WangX JSE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Google Scholar 

  51. Breiter K, Lamarao CN, Borges RMK, Dall’Agnol R (2014) Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 192–195:208–225

    Google Scholar 

  52. Grimes CB, Cheadle MJ, Wooden JL, John BE (2015) “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib Min Pet 170:46

    Google Scholar 

  53. Colpron M, Nelson J (2009) A Paleozoic Northwest Passage: incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera. In: Cawood PA, Kroner A (eds) Earth accretionary systems in space and time, vol 318. Geological Society of London Special Publications, London, pp 273–307

    Google Scholar 

  54. Beranek LP, van Staal CR, Gordee SM, McClelland WC, Israel S, Mihalynuk M (2012) Tectonic significance of upper Cambrian–middle Ordovician mafic volcanic rocks on the Alexander terrane, Saint Elias Mountains, northwestern Canada. J Geol 120:293–314

    Google Scholar 

  55. Miller EL, Kuznetsov N, Soboleva A, Udoratina O, Grove MJ, Gehrels G (2011) Baltica in the Cordillera? Geology 39:791–794

    Google Scholar 

  56. Strauss JV, Hoiland CW, Ward WP, Johnson BG, Nelson LL, McClelland WC (2017) Orogen transplant: Taconic–Caledonian arc magmatism in the central Brooks Range of Alaska. Geol Soc Am Bull 129:649–676

    Google Scholar 

  57. Lorenz H, Gee DG, Simonetti A (2008) Detrital zircon ages and provenance of the Late Neoproterozoic and Palaeozoic successions on Severnaya Zemlya, Kara Shelf: a tie to Baltica. Nor J Geol 88:235–258

    Google Scholar 

  58. Pease V, Scott RA (2009) Crustal affinities in the Arctic Uralides, northern Russia: significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. J Geol Soc 166:517–527

    Google Scholar 

  59. Lorenz H, Gee DG, Korago E, Kovaleva G, McClelland WC, Gilotti JA, Frei D (2013) Detrital zircon geochronology of Palaeozoic Novaya Zemlya—a key to understanding the basement of the Barents Shelf. Terra Nova 25:496–503

    Google Scholar 

  60. Ershova VB, Lorenz H, Prokopiev AV, Sobolev NN, Khudoley AK, Petrov EO, Estrada S, Sergeev S, Larionov A, Thomsen TB (2016) The De Long Islands: a missing link in unraveling the Paleozoic paleogeography of the Arctic. Gondwana Res 35:305–322

    Google Scholar 

  61. Ershova VB, Prokopiev AV, Khudoley AK, Petrov EO, Andersen T, Kullerud K, Kolchanov DA (2020) U-Pb Age and Hf Isotope Geochemistry of Detrital Zircons from Cambrian Sandstones of the Severnaya Zemlya Archipelago and Northern Taimyr (Russian High Arctic). Minerals 10:36

    Google Scholar 

  62. McClelland WC, Malone SJ, von Gosen W, Piepjohn K, Läufer A (2012) The timing of sinistral displacement of the Pearya Terrane along the Canadian Arctic Margin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (Ger J Geosci) 163:251–259

    Google Scholar 

  63. Majka J, Kośmińska K, Mazur S, Czerny J, Piepjohn K, Dwornik M, Manecki M (2015) Two garnet growth events in polymetamorphic rocks in southwest Spitsbergen, Norway: insight in the history of Neoproterozoic and early Paleozoic metamorphism in the High Arctic. Can J Earth Sci 52:1045–1061

    Google Scholar 

  64. Ohta Y (1994) Caledonian and Precambrian history in Svalbard: a review and implication of escape tectonics. Tectonophysics 231:183–194

    Google Scholar 

  65. Embry AF (1988) Middle–Upper Devonian sedimentation in the Canadian Arctic Islands and the Ellesmerian orogeny. In: MacMillan NJ, Embry AF, Glass DJ (eds) Devonian of the World, vol 14. Canadian Society of Petroleum Geologists Memoir, Ottawa, pp 15–28

    Google Scholar 

  66. Anfinson OA, Leier AL, Embry AF, Dewing K (2012) Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands. Geol Soc Am Bull 124:415–430

    Google Scholar 

  67. Anfinson OA, Leier AL, Dewing K, Guest B, Stockli DF, Embry AF (2013) Insights into the Phanerozoic tectonic evolution of the northern Laurentian margin: detrital apatite and zircon (U–Th)/He ages from Devonian strata of the Franklinian Basin, Canadian Arctic Islands. Can J Earth Sci 50:761–768

    Google Scholar 

  68. Patchett PJ, Roth MA, Canale BS, de Freitas TA, Harrison JC, Embry AF, Ross GM (1999) Nd isotopes, geochemistry, and constraints on sources of sediments in the Franklinian mobile belt, Arctic Canada. Geol Soc Am Bull 111:578–589

    Google Scholar 

  69. Henriksen N, Higgins AK, Karlsbeek F, Pulvertaft TCR (2009) Greenland from Archean to Quaternary. Descriptive text to the 1995 Geological map of Greenland, 1:2,500,000. Geol Surv Den Greenland Bull 18:126

    Google Scholar 

  70. Pedersen SAS (1980) Regional geology and thrust fault tectonics in the southern part of the North Greenland fold belt, North Peary Land. Rapport Grønlands Geologiske Undersøgelse 99:79–87

    Google Scholar 

  71. Soper NJ, Higgins AK, Friderichsen JD (1980) The North Greenland fold belt in eastern Johannes V. Jensen Land. Rapport Grønlands Geologiske Undersøgelse 99:89–98

    Google Scholar 

  72. Parsons I (1981) Volcanic centres between Frigg Fjord and Midtkap, eastern North Greenland. Rapport Grønlands Geologiske Undersøgelse 106:69–75

    Google Scholar 

  73. Pedersen SAS, Holm M (1983) The significance of a Middle Devonian K/Ar age of an intrusive rock in the southern part of the North Greenland Fold Belt. Bull Geol Soc Den 31:121–127

    Google Scholar 

  74. Rosa D, Majka J, Thrane K, Guarnieri P (2016) Evicence for Timianian-age basement rocks in North Greenland as documented through U–Pb zircon dating of igneous xenoliths from the Midtkap volcanic centers. Precambr Res 275:394–405

    Google Scholar 

  75. Estrada S, Tessensohn F, Benita-Lissete S (2018) A Timanian island-arc fragment in North Greenland: the Midtkap igneous suite. J Geodyn 118:140–153

    Google Scholar 

  76. Amato JM, Wright JE (1998) Geochronologic investigations of magmatism and metamorphism within the Kigluaik Mountains gneiss dome, Seward Peninsula, Alaska. In: Clough JG, Larson F (eds) Short Notes on Alaska Geology 1997, vol 118. Alaska Division of Geological and Geophysical Surveys Prof Rep, Fairbanks, pp 1–22

    Google Scholar 

  77. Till AB, Amato JM, Aleinikoff JN, Bleick HA (2014) U-Pb detrital zircon geochronology as evidence for the origin of the Nome Complex, northern Alaska, and implications for regional and trans-Arctic correlations. In: Dumoulin JA, Till AB (eds) Reconstruction of a Late Proterozoic to Devonian continental margin sequence, Northern Alaska, its paleogeographic significance, and contained base-metal sulfide deposits, vol 506. Geological Society of America Special Paper, Washington, DC, pp 111–131

    Google Scholar 

  78. Gehrels GE, Saleeby JB (1987) Geologic framework, tectonic evolution, and displacement history of the Alexander terrane. Tectonics 6:151–173

    Google Scholar 

  79. Brumley K, Miller EL, Konstantinou A, Grove M, Meisling KE, Mayer LA (2015) First bedrock samples dredged from submarine outcrops in the Chukchi Borderland, Arctic Ocean. Geosphere 11:76–92

    Google Scholar 

  80. O’Brien T, Miller EL (2014) Continuous zircon growth during long-lived granulite facies metamorphism: a microtextural, U–Pb, Lu–Hf, and trace element study of Caledonian rocks from the Chukchi Borderland, Arctic Ocean. Contr Min Pet 168:1–19

    Google Scholar 

  81. Soja CM (1994) Significance of Silurian stromatolite–sphinctozoan reefs. Geology 22:355–358

    Google Scholar 

  82. Bazard DR, Butler RF, Gehrels GE, Soja CM (1995) Paleomagnetism of the Early Devonian Karheen Formation, southeast Alaska: implication for the Alexander terrane paleogeography. Geology 23:707–710

    Google Scholar 

  83. Beranek LP, van Staal CR, McClelland WC, Israel S, Mihalynuk MG (2013) Baltican crustal provenance for Cambrian–Ordovician sandstones of the Alexander terrane, North American Cordillera: evidence from detrital zircon U–Pb geochronology and Hf isotope geochemistry. J Geol Soc 170:7–18

    Google Scholar 

  84. Beranek LP, van Staal CR, McClelland WC, Israel S, Mihalynuk MG (2013) Detrital zircon Hf isotopic compositions indicate a northern Caledonian connection for the Alexander terrane. Lithosphere 5:163–168

    Google Scholar 

  85. Oliver J, Roberts K, Friedman R (2011) The Niblack mine: a Neoproterozoic precious metals enhanced, volcanic hosted massive sulfide, Prince of Wales Island Alaska. Mineralized zones and mineral resources, structural style, stratigraphic and U–Pb geochronological relationships. Alaska Miners Association of Annual Convention of Abstracts, pp 60–62

  86. Gehrels GE (1990) Late Proterozoic–Cambrian metamorphic basement of the Alexander Terrane on Long and Dall Islands, southeast Alaska. Soc Am Bull 102:760–767

    Google Scholar 

  87. Karl SM, Haeussler PJ, Friedman RM, Mortensen JK, Himmelberg GR, Zumsteg CL (2006) Late Proterozoic ages for rocks on Mount Cheetdeekahyu and Admiralty Island, Alexander terrane, southeast Alaska. Geol Soc Am Abstr Progr 38:20

    Google Scholar 

  88. Tochilin C, Gehrels GE, Nelson J, Mahoney B (2014) U-Pb and Hf isotope analysis of detrital zircons from the Banks Island assemblage (coastal British Columbia) and southern Alexander terrane (southeast Alaska). Lithosphere 6:200–215

    Google Scholar 

  89. Mayr U (1992) Reconnaissance and preliminary interpretation of Upper Devonian to Permian stratigraphy of northeastern Ellesmere Island, Canadian Arctic Archipelago. Geol Surv Can Pap 91–08:122

    Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by National Science Foundation Grants EAR-0948359 and EAR-1049368 to McClelland, and EAR 1032156 to the University of Arizona Laserchron Center, Grants from ExxonMobil, and the University of Iowa Department of Earth and Environmental Science to Malone, and funds from Shell Inc. to McClelland. Fieldwork was supported by the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR- German Federal Institute for Geosciences and Natural Resources). Helpful review by O. Anfinson and J. Majka improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn J. Malone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malone, S.J., McClelland, W.C. Zircon geochronology and geochemistry of the Ward Hunt pluton, Pearya terrane, Canadian High Arctic: Insights into its age, origin, and circum-Arctic Timanide connections. Arktos 6, 93–105 (2020). https://doi.org/10.1007/s41063-020-00078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-020-00078-9

Keywords

Navigation