Skip to main content

Advertisement

Log in

10Be dating the last deglaciation of Bjørnøya, Svalbard

  • Original Article
  • Published:
arktos

Abstract

The retreat of the Barents Sea Ice Sheet was a major event in the last deglaciation of the Arctic. Numerous studies document the fine details of the seafloor that reveal a highly dynamic ice sheet somewhat analogous to the West Antarctic Ice Sheet. Despite detailed records of the Barents Sea Ice Sheet’s dynamics, comparatively few studies have provided chronological control that constrains its history of final collapse. We report cosmogenic 10Be exposure ages from 14 glacial erratics, nine moraine boulders and one bedrock surface from southern Bjørnøya, an island situated in the Barents Sea between Svalbard and Norway. 17 of 24 samples average 12.4 ± 0.5 ka with no significant relationship between age and elevation. We interpret the ages to represent the time when Bjørnøya, and the shallow Spitsbergenbanken upon which it sits, became finally deglaciated following break up of the Barents Sea Ice Sheet. The timing of deglaciation, overlapping with the early Younger Dryas, suggests that Younger Dryas climate change did not reverse overall glacier recession, although we cannot rule out a stillstand or re-advance during the early Younger Dryas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460. https://doi.org/10.1126/science.1114613

    Article  Google Scholar 

  2. Balco G, Briner J, Finkel RC, Rayburn JA, Ridge JC, Schaefer JM (2009) Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quat Geochronol 4:93–107. https://doi.org/10.1016/j.quageo.2008.09.001

    Article  Google Scholar 

  3. Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195. https://doi.org/10.1016/j.quageo.2007.12.001

    Article  Google Scholar 

  4. Bierman PR, Marsella KA, Patterson C, Davis PT, Caffee M (1999) Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27:25–39. https://doi.org/10.1016/S0169-555X(98)00088-9

    Article  Google Scholar 

  5. Borchers B, Marrero S, Balco G, Caffee M, Goehring B, Lifton N, Nishiizumi K, Phillips F, Schaefer J, Stone J (2016) Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol 31:188–198. https://doi.org/10.1016/j.quageo.2015.01.009

    Article  Google Scholar 

  6. Briner JP, Miller GH, Davis PT, Finkel RC (2005) Cosmogenic exposure dating in arctic glacial landscapes: implications for the glacial history of northeastern Baffin Island, Arctic Canada. Can J Earth Sci 42:67–84. https://doi.org/10.1139/e04-102

    Article  Google Scholar 

  7. Corbett LB, Bierman PR, Rood DH (2016) An approach for optimizing in situ cosmogenic 10Be sample preparation. Quat Geochronol 33:24–34. https://doi.org/10.1016/j.quageo.2016.02.001

    Article  Google Scholar 

  8. Elverhøi A, Fjeldskaar W, Solheim A, Nyland-Berg M, Russwurm L (1993) The Barents sea ice sheet—a model of its growth and decay during the last ice maximum. Quatern Sci Rev 12:863–873. https://doi.org/10.1016/0277-3791(93)90025-H

    Article  Google Scholar 

  9. Fenton CR, Hermanns RL, Blikra LH, Kubik PW, Bryant C, Niedermann S, Meixner A, Goethals MM (2011) Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69° N, Norway. Quat Geochronol 6:437–452. https://doi.org/10.1016/j.quageo.2011.04.005

    Article  Google Scholar 

  10. Gjermundsen EF, Briner JP, Akçar N, Salvigsen O, Kubik P, Gantert N, Hormes A (2013) Late Weichselian local ice dome configuration and chronology in Northwestern Svalbard: early thinning, late retreat. Quatern Sci Rev 72:112–127. https://doi.org/10.1016/j.quascirev.2013.04.006

    Article  Google Scholar 

  11. Goehring BM, Lohne ØS, Mangerud J, Svendsen JI, Gyllencreutz R, Schaefer J, Finkel R (2012) Late glacial and holocene 10Be production rates for western Norway. J Quat Sci 27:89–96. https://doi.org/10.1002/jqs.1517

    Article  Google Scholar 

  12. Heyman J, Stroeven AP, Harbor JM, Caffee MW (2011) Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth Planet Sci Lett 302:71–80. https://doi.org/10.1016/j.epsl.2010.11.040

    Article  Google Scholar 

  13. Hogan KA, Dowdeswell JA, Hillenbrand C-D, Ehrmann W, Noormets R, Wacker L (2017) Subglacial sediment pathways and deglacial chronology of the northern Barents Sea Ice Sheet. Boreas 46:750–771. https://doi.org/10.1111/bor.12248

    Article  Google Scholar 

  14. Hormes A, Gjermundsen EF, Rasmussen TL (2013) From mountain top to the deep sea—deglaciation in 4D of the northwestern Barents Sea ice sheet. Quatern Sci Rev 75:78–99. https://doi.org/10.1016/j.quascirev.2013.04.009

    Article  Google Scholar 

  15. Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45. https://doi.org/10.1111/bor.12142

    Article  Google Scholar 

  16. Ingólfsson Ó, Landvik JY (2013) The Svalbard–Barents Sea ice-sheet—historical, current and future perspectives. Quatern Sci Rev 64:33–60. https://doi.org/10.1016/j.quascirev.2012.11.034

    Article  Google Scholar 

  17. Jakobsson M, Mayer L, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke HW, Zarayskaya Y, Accettella D, Armstrong A, Anderson RM, Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik O, Kristoffersen Y, Marcussen C, Mohammad R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett 39:L12609. https://doi.org/10.1029/2012GL052219

    Article  Google Scholar 

  18. Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quatern Sci Rev 29:1301–1312. https://doi.org/10.1016/j.quascirev.2010.02.020

    Article  Google Scholar 

  19. Joughin I, Alley RB (2011) Stability of the West Antarctic ice sheet in a warming world. Nat Geosci 4:506–513. https://doi.org/10.1038/ngeo1194

    Article  Google Scholar 

  20. Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ—produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587. https://doi.org/10.1016/0016-7037(92)90401-4

    Article  Google Scholar 

  21. Laberg JS, Vorren TO (1996) The Middle and Late Pleistocence evolution and the Bear Island Trough Mouth Fan. Global Planet Change 12:309–330. https://doi.org/10.1016/0921-8181(95)00026-7

    Article  Google Scholar 

  22. Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439. https://doi.org/10.1016/0012-821X(91)90220-C

    Article  Google Scholar 

  23. Landvik JY, Alexanderson H, Henriksen M, Ingólfsson Ó (2014) Landscape imprints of changing glacial regimes during ice-sheet build-up and decay: a conceptual model from Svalbard. Quatern Sci Rev 92:258–268. https://doi.org/10.1016/j.quascirev.2013.11.023

    Article  Google Scholar 

  24. Landvik JY, Bondevik S, Elverhøi A, Fjeldskaar W, Mangerud J, Salvigsen O, Siegert MJ, Svendsen J-I, Vorren TO (1998) The last glacial maximum of Svalbard and the Barents Sea area: Ice sheet extent and configuration. Quatern Sci Rev 17:43–75. https://doi.org/10.1016/S0277-3791(97)00066-8

    Article  Google Scholar 

  25. Lifton N, Sato T, Dunai TJ (2014) Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet Sci Lett 386:149–160. https://doi.org/10.1016/j.epsl.2013.10.052

    Article  Google Scholar 

  26. Mangerud J, Aarseth I, Hughes ALC, Lohne ØS, Skår K, Sønstegaard E, Svendsen JI (2016) A major re-growth of the Scandinavian Ice Sheet in western Norway during Allerød-Younger Dryas. Quatern Sci Rev 132:175–205. https://doi.org/10.1016/j.quascirev.2015.11.013

    Article  Google Scholar 

  27. Mangerud J, Landvik JY (2007) Younger Dryas cirque glaciers in western Spitsbergen: smaller than during the Little Ice Age. Boreas 36:278–285. https://doi.org/10.1111/j.1502-3885.2007.tb01250.x

    Article  Google Scholar 

  28. Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J (2007) Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods. Phys Res Sect B Beam Interact Mater Atoms 258:403–413. https://doi.org/10.1016/j.nimb.2007.01.297

    Article  Google Scholar 

  29. Ottesen D, Dowdeswell JA, Rise L (2005) Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: The 2500-km-long Norwegian-Svalbard margin (57°–80°N). GSA Bull 117:1033–1050. https://doi.org/10.1130/B25577.1

    Article  Google Scholar 

  30. Patton H, Andreassen K, Bjarnardóttir LR, Dowdeswell JA, Winsborrow MCM, Noormets R, Polyak L, Auriac A, Hubbard A (2015) Geophysical constraints on the dynamics and retreat of the Barents Sea ice sheet as a paleobenchmark for models of marine ice sheet deglaciation. Rev Geophys 53:1051–1098

    Article  Google Scholar 

  31. Pendleton SL, Ceperley EG, Briner JP, Kaufman DS, Zimmerman S (2015) Rapid and early deglaciation in the central Brooks Range, Arctic Alaska. Geology 43:419–422. https://doi.org/10.1130/G36430.1

    Article  Google Scholar 

  32. Rasmussen TL, Thomsen E, Ślubowska MA, Jessen S, Solheim A, Koç N (2007) Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quatern Res 67:100–114. https://doi.org/10.1016/j.yqres.2006.07.002

    Article  Google Scholar 

  33. Rood DH, Hall S, Guilderson TP, Finkel RC, Brown TA (2010) Challenges and opportunities in high-precision Be-10 measurements at CAMS. Nuclear Instruments and Methods. Phys Res Sect B Beam Interact Mater Atoms 268:730–732. https://doi.org/10.1016/j.nimb.2009.10.016

    Article  Google Scholar 

  34. Rüther DC, Bjarnadóttir LR, Junttila J, Husum K, Rasmussen TL, Lucchi RG, Andreassen K (2012) Pattern and timing of the northwestern Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition: Barents Sea Ice Sheet deglaciation and episodic Holocene deposition. Boreas 41:494–512. https://doi.org/10.1111/j.1502-3885.2011.00244.x

    Article  Google Scholar 

  35. Rüther DC, Mattingsdal R, Andreassen K, Forwick M, Husum K (2011) Seismic architecture and sedimentology of a major grounding zone system deposited by the Bjørnøyrenna Ice Stream during Late Weichselian deglaciation. Quatern Sci Rev 30:2776–2792. https://doi.org/10.1016/j.quascirev.2011.06.011

    Article  Google Scholar 

  36. Salvigsen O, Slettemark Ø (1995) Past glaciation and sea levels on Bjørnøya, Svalbard. Polar Res 14:245–251. https://doi.org/10.3402/polar.v14i2.6666

    Article  Google Scholar 

  37. Stokes CR, Corner GD, Winsborrow MCM, Husum K, Andreassen K (2014) Asynchronous response of marine-terminating outlet glaciers during deglaciation of the Fennoscandian Ice Sheet. Geology 42:455–458. https://doi.org/10.1130/G35299.1

    Article  Google Scholar 

  38. Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23753–23759. https://doi.org/10.1029/2000JB900181

    Article  Google Scholar 

  39. Stroeven AP, Heyman J, Fabel D, Björck S, Caffee MW, Fredin O, Harbor JM (2015) A new Scandinavian reference 10Be production rate. Quat Geochronol 29:104–115. https://doi.org/10.1016/j.quageo.2015.06.011

    Article  Google Scholar 

  40. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingólfsson Ó, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud J, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late Quaternary ice sheet history of northern Eurasia. Quatern Sci Rev 23:1229–1271. https://doi.org/10.1016/j.quascirev.2003.12.008

    Article  Google Scholar 

  41. Swift JH (1986) The arctic waters. In: The Nordic Seas. Springer, New York, pp 129–154

  42. Vorren TO, Plassen L (2002) Deglaciation and palaeoclimate of the Andfjord-Vågsfjord area, North Norway. Boreas 31:97–125. https://doi.org/10.1111/j.1502-3885.2002.tb01060.x

    Article  Google Scholar 

  43. Winsborrow MCM, Andreassen K, Corner GD, Laberg JS (2010) Deglaciation of a marine-based ice sheet: Late Weichselian palaeo-ice dynamics and retreat in the southern Barents Sea reconstructed from onshore and offshore glacial geomorphology. Quatern Sci Rev 29:424–442. https://doi.org/10.1016/j.quascirev.2009.10.001

    Article  Google Scholar 

  44. Wohlfarth B, Lemdahl G, Olsson S, Persson T, Snowball I, Ising J, Jones V (1995) Early Holocene environment on Bjørnøya (Svalbard) inferred from multidisciplinary lake sediment studies. Polar Res 14:253–275. https://doi.org/10.3402/polar.v14i2.6667

    Article  Google Scholar 

  45. Worsley D, Agdestein T, Gjelberg JG, Kirkemo K, Mørk A, Nilsson I, Olaussen S, Steel RJ, Stemmerik L (2001) The geological evolution of Biørnøya, Arctic Norway: implications for the Barents Shelf. Norwegian J Geol/Norsk Geol Forening 81

  46. Young NE, Schaefer JM, Briner JP, Goehring BM (2013) A 10Be production-rate calibration for the Arctic. J Quat Sci 28:515–526. https://doi.org/10.1002/jqs.2642

    Article  Google Scholar 

Download references

Acknowledgements

We thank William d’Andrea, Katja Baum, Willem van der Bilt, Alexander Hovland, Henriika Kivilä and Torgeir Røthe for help during fieldwork, Joseph Tulenko for help with figure 1, and Susan Zimmerman and the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory for assistance with 10Be/9Be measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Briner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briner, J.P., Hormes, A. 10Be dating the last deglaciation of Bjørnøya, Svalbard. Arktos 4, 1–10 (2018). https://doi.org/10.1007/s41063-018-0051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0051-1

Keywords

Navigation