Skip to main content

Advertisement

Log in

New insights into sea ice changes over the past 2.2 kyr in Disko Bugt, West Greenland

  • Review Article
  • Published:
arktos

Abstract

Past sea ice conditions and open water phytoplankton production were reconstructed from a sediment core taken in Disko Bugt, West Greenland, using the sea ice biomarker IP25 and other specific phytoplankton biomarker (i.e., brassicasterol, dinosterol, HBI III) records. Our biomarker record indicates that Disko Bugt experienced a gradual expansion of seasonal sea ice during the last 2.2 kyr. Maximum sea ice extent was reached during the Little Ice Age around 0.2 kyr BP. Superimposed on this longer term trend, we find short-term oscillations in open water primary production and terrigenous input, which may be related to the Atlantic Multidecadal Oscillation and solar activity changes as potential climatic trigger mechanisms. A direct sample-to-sample multiproxy comparison of our new biomarker record with microfossil (i.e., benthic foraminifera, dinocysts, and diatoms) and other geochemical records (i.e., alkenone biomarkers) indicates that different proxies are influenced by the complex environmental system with pronounced seasonal changes and strong oceanographic gradients, e.g., freshwater inflow from the Greenland Ice Sheet. Differences in sea ice reconstructions may indicate that the IP25 record reflects only the relatively short sea ice season (spring), whereas other microfossil reconstructions may reflect a longer (spring–autumn) interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Modified from Wassmann et al. [146]

Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrews JT, Belt ST, Olafsdottir S, Massé G, Vare LL (2009) Sea ice and marine climate variability for NW Iceland/Denmark Strait over the last 2000 cal. yr BP. Holocene 19:775–784. https://doi.org/10.1177/0959683609105302

    Article  Google Scholar 

  2. Allan E, Vernal A, Knudsen MF, Hillaire-Marcel C, Moros M, Ribeiro S, Ouellet-Bernier M, Seidenkrantz M (2018) Late Holocene sea-surface instabilities in the Disko Bugt area, west Greenland, in phase with δ18O-oscillations at Camp Century. Paleoceanogr Paleoclimatology 1–17. https://doi.org/10.1002/2017PA003289

  3. Alonso-Garcia M, Andrews JT, Belt ST, Cabedo-Sanz P, Darby D, Jaeger J (2013) A comparison between multiproxy and historical data (AD 1990–1840) of drift ice conditions on the East Greenland shelf (~ 66°N). Holocene 23:1672–1683. https://doi.org/10.1177/0959683613505343

    Article  Google Scholar 

  4. Andersen OGN (1981) The annual cycle of temperature, salinity, currents and water masses in Disko Bugt and adjacent waters, West Greenland. Comm Sci Res Greenl 5:33

    Google Scholar 

  5. Barrick RC, Hedges JI, Peterson ML (1980) Hydrocarbon geochemistry of the Puget Sound region—I. Sedimentary acyclic hydrocarbons. Geochim. Cosmochim Acta 44:1349–1362. https://doi.org/10.1016/0016-7037(80)90094-0

    Article  Google Scholar 

  6. Belt ST, Allard WG, Massé G, Robert JM, Rowland SJ (2000) Highly branched isoprenoids (HBIs): Identification of the most common and abundant sedimentary isomers. Geochim Cosmochim Acta. https://doi.org/10.1016/S0016-7037(00)00464-6

    Article  Google Scholar 

  7. Belt ST, Brown TA, Smik L, Tatarek A, Wiktor J, Stowasser G, Husum K (2017) Identification of C25 highly branched isoprenoid (HBI) alkenes in diatoms of the genus Rhizosolenia in polar and sub-polar marine phytoplankton. Org Geochem 110:65–72. https://doi.org/10.1016/j.orggeochem.2017.05.007

    Article  Google Scholar 

  8. Belt ST, Cabedo-Sanz P, Smik L, Navarro-Rodriguez A, Berben SMP, Knies J, Husum K (2015) Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet Sci Lett 431:127–139. https://doi.org/10.1016/j.epsl.2015.09.020

    Article  Google Scholar 

  9. Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38(1):16–27. https://doi.org/10.1016/j.orggeochem.2006.09.013

    Article  Google Scholar 

  10. Belt ST, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev. https://doi.org/10.1016/j.quascirev.2012.12.001

    Article  Google Scholar 

  11. Belt ST, Vare LL, Massé G, Manners HR, Price JC, MacLachlan SE, Schmidt S (2010) Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years. Quat Sci Rev 29(25–26):3489–3504. https://doi.org/10.1016/j.quascirev.2010.06.041

    Article  Google Scholar 

  12. Berben SMP, Husum K, Navarro-Rodriguez A, Belt ST, Aagaard-Sørensen S (2017) Semi-quantitative reconstruction of early to late Holocene spring and summer sea ice conditions in the northern Barents Sea. J Quat Sci 32:587–603. https://doi.org/10.1002/jqs.2953

    Article  Google Scholar 

  13. Berben SMP, Husum K, Cabedo-Sanz P, Belt ST (2014) Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea. Clim Past 10:181–198. https://doi.org/10.5194/cp-10-181-2014

    Article  Google Scholar 

  14. Bianchi TS (2007) Biogeochemistry of estuaries. Oxford University Press, New York

    Google Scholar 

  15. Blumer M, Guillard RRL, Chase T (1971) Hydrocarbons of marine phytoplankton. Mar Biol. https://doi.org/10.1007/BF00355214

    Article  Google Scholar 

  16. Boertmann D, Mosbech A, Schiedek D, Dünweber M (2013), Disko West. A strategic environmental impact assessment of hydrocarbon activities, Aarhus University, DCE—Danish Centre for Environment and Energy, pp. 306, Scientific Report from DCE—Danish Centre for Environment and Energy No. 71

  17. Bronk-Ramsey C (2009). Bayesian analysis of radiocarbon dates. Radiocarbon. https://doi.org/10.2458/azu_js_rc.v51i1.3494

    Article  Google Scholar 

  18. Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun 5:4197. https://doi.org/10.1038/ncomms5197

    Article  Google Scholar 

  19. Buch E, Pedersen SA, Ribergaard MH (2004) Ecosystem variability in West Greenland Waters. J Northwest Atl Fish Sci 34:13–28. https://doi.org/10.2960/J.v34.m479

    Article  Google Scholar 

  20. Buch E (2000). Air-sea-ice conditions off southwest Greenland, 1981-97. J Northwest Atl Fish Sci. https://doi.org/10.2960/J.v26.a6

    Article  Google Scholar 

  21. Cabedo-Sanz P, Belt ST, Jennings AE, Andrews JT, Geirsdóttir Á (2016) Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation. Quat Sci Rev 146:99–115. https://doi.org/10.1016/j.quascirev.2016.06.012

    Article  Google Scholar 

  22. Cabedo-Sanz P, Belt ST (2016) Seasonal sea ice variability in eastern Fram Strait over the last 2000 years. Arktos 2:22. https://doi.org/10.1007/s41063-016-0023-2

    Article  Google Scholar 

  23. Cabedo-Sanz P, Belt ST, Knies J, Husum K (2013) Identification of contrasting seasonal sea ice conditions during the Younger Dryas. Quat Sci Rev 79:74–86. https://doi.org/10.1016/j.quascirev.2012.10.028

    Article  Google Scholar 

  24. Cavalieri DJ, Parkinson CL, Gloersen P, Zwally HJ (1996). Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. updated yearly; accessed August 2017. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed A. https://doi.org/10.5067/8GQ8LZQVL0VL

  25. Cavalieri DJ, Gloersen P, Parkinson CL, Comiso JC, Zwally HJ (1997). Observed hemispheric asymmetry in global sea ice changes. Science 278(5340), 1104–1106. from http://www.sciencemag.org/cgi/content/abstract/278/5340/1104

  26. Clotten C, Stein R, Fahl K, De Schepper S (2018) Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907). Earth Planet Sci Lett 481:61–72. https://doi.org/10.1016/j.epsl.2017.10.011

    Article  Google Scholar 

  27. Cormier MA, Rochon A, de Vernal A, Gélinas Y (2016) Multi-proxy study of primary production and paleoceanographical conditions in northern Baffin Bay during the last centuries. Mar Micropaleontol 127:1–10. https://doi.org/10.1016/j.marmicro.2016.07.001

    Article  Google Scholar 

  28. Darby DA, Andrews JT, Belt ST, Jennings AE, Cabedo-Sanz P (2017) Holocene cyclic records of ice-rafted debris and sea ice variations on the East Greenland and Northwest Iceland Margins. Arctic, Antarct. Alp Res 49:649–672. https://doi.org/10.1657/AAAR0017-008

    Article  Google Scholar 

  29. de Leeuw JW, Rijpstra WIC, Schenck PA, Volkman JK (1983). Free, esterified and residual bound sterols in Black Sea Unit I sediments. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/0016-7037(83)90268-5

    Article  Google Scholar 

  30. Erbs-Hansen DR, Knudsen KL, Olsen J, Lykke-Andersen H, Underbjerg JA, Sha L (2013). Paleoceanographical development off Sisimiut, West Greenland, during the mid- and late Holocene: A multiproxy study. Mar Micropaleontol. https://doi.org/10.1016/j.marmicro.2013.06.003

    Article  Google Scholar 

  31. Fahl K, Stein R (1997). Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: Surface water productivity vs. terrigenous input. Org Geochem. https://doi.org/10.1016/S0146-6380(97)00007-7

    Article  Google Scholar 

  32. Fahl K, Stein R (1999) Biomarkers as organic-carbon-source and environmental indicators in the late quaternary Arctic Ocean: problems and perspectives. Mar Chem 63(3–4):293–309. https://doi.org/10.1016/S0304-4203(98)00068-1

    Article  Google Scholar 

  33. Fahl K, Stein R (2007). Biomarker records, organic carbon accumulation, and river discharge in the Holocene southern Kara Sea (Arctic Ocean). Geo-Mar Lett. https://doi.org/10.1007/s00367-006-0049-8

    Article  Google Scholar 

  34. Fahl K, Stein R (2012) Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: new insights from biomarker proxy records. Earth Planet Sci Lett 351–352:123–133. https://doi.org/10.1016/j.epsl.2012.07.009

    Article  Google Scholar 

  35. Faust JC, Fabian K, Milzer G, Giraudeau J, Knies J (2016) Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years. Earth Planet Sci Lett 435:84–93. https://doi.org/10.1016/j.epsl.2015.12.003

    Article  Google Scholar 

  36. Hansen MO, Nielsen TG, Stedmon CA, Munk P (2012) Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol Oceanogr 57:634–644. https://doi.org/10.4319/lo.2012.57.2.0634

    Article  Google Scholar 

  37. Harff J, Dietrich R, Endler R, Hentzsch B, Jensen JB, Krauss KA, Leipe N, Lloyd T, Mikkelsen J, Perner NM,M, Richter K, Risgaard-Petersen A, Rysgaard N, Richter S, Sandgren T, Sheshenko P, Snowball V, Waniek I, Weinrebe J, Witkowski WA (2007) Deglaciation history, Coastal Development, and environmental change during the Holocene in western Merian’, Greenland. Cruise report MSM 05/03 R/V “Maria S. Merian.” Baltic Sea Research Institute, Rostock

  38. He D, Simoneit BRT, Xu Y, Jaffé R (2016) Occurrence of unsaturated C25 highly branched isoprenoids (HBIs) in a freshwater wetland. Org Geochem. https://doi.org/10.1016/j.orggeochem.2016.01.006

    Article  Google Scholar 

  39. Hoff U, Rasmussen TL, Stein R, Ezat ME, Fahl K (2016) Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present. Nat Commun 7:12247

    Article  Google Scholar 

  40. Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci. https://doi.org/10.1038/ngeo316

    Article  Google Scholar 

  41. Holland, M., Bitz, C., Eby, M., Weaver, A. (2001). The role of Ice-Ocean interactions in the variability of the North Atlantic thermohaline circulation. J Clim 14, 656–675. https://doi.org/10.1175/1520-0442(2001)014<0656:TROIOI>2.0.CO;2

    Article  Google Scholar 

  42. Horner R, Schrader GC (1982) Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35(4):485–503. https://doi.org/10.14430/arctic2356

    Article  Google Scholar 

  43. Hörner T, Stein R, Fahl K (2017) Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean). Geo-Mar Lett 7:1–12. https://doi.org/10.1007/s00367-017-0501-y

    Article  Google Scholar 

  44. Hörner T, Stein R, Fahl K, Birgel D (2016) Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)—a high-resolution biomarker study. Quat Sci Rev 143:133–149. https://doi.org/10.1016/j.quascirev.2016.04.011

    Article  Google Scholar 

  45. Huang WY, Meinschein WG (1979) Sterols as ecological indicators. Geochim Cosmochim Acta 43(5):739–745

    Article  Google Scholar 

  46. Jaffé R, Wolff GA, Cabrera A, Chitty C, H (1995) The biogeochemistry of lipids in rivers of the Orinoco Basin. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(95)00246-V

    Article  Google Scholar 

  47. Jakobsson M, Macnab R, Mayer L, Anderson R, Edwards M, Hatzky J, Schenke HW, Johnson P (2008) An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys Res Lett. https://doi.org/10.1029/2008GL033520

    Article  Google Scholar 

  48. Jennings AE, Andrews JT, Cofaigh Ó, Onge C, Sheldon GS, Belt C, Cabedo-Sanz ST, Hillaire-Marcel P, C (2017) Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene. Earth Planet Sci Lett 472:1–13. https://doi.org/10.1016/j.epsl.2017.05.007

    Article  Google Scholar 

  49. Jennings AE, Knudsen KL, Hald M, Hansen V, Andrews JT, Hansen CV, Andrews JT (2002) A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf. Holocene 12(1):49–58. https://doi.org/10.1191/0959683602hl519rp

    Article  Google Scholar 

  50. Jensen KG, Kuijpers A, Koç N, Heinemeier J (2004) Diatom evidence of hydrographic changes and ice conditions in Igaliku Fjord, South Greenland, during the past 1500 years. Holocene 14(2):152–164. https://doi.org/10.1191/0959683604hl698rp

    Article  Google Scholar 

  51. Jensen LM, Christensen TR (2014). Nuuk Ecological Research Operations. In: 7 th Annual Report. Aarhus University, DCE—Danish Centre for Environment and Energy, p 94

  52. Jiang H, Eiríksson J, Schulz M, Knudsen KL, Seidenkrantz MS (2005) Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology 33(1):73–76. https://doi.org/10.1130/G21130.1

    Article  Google Scholar 

  53. Johns L, Wraige EJ, Belt ST, Lewis CA, Massé G, Robert JM, Rowland SJ (1999) Identification of a C25 highly branched isoprenoid (HBI) diene in Antarctic sediments, Antarctic sea-ice diatoms and cultured diatoms. Org Geochem 30:1471–1475. https://doi.org/10.1016/S0146-6380(99)00112-6

    Article  Google Scholar 

  54. Juul-Pedersen T, Arendt KE, Mortensen J, Krawczyk D, Rysgaard S, Retzel A (2014), Nuuk Basic: The MarineBasis programme, in Nuuk Ecological Research Operations, 7th Annual Report, 2013, edited by L. M

  55. Keigwin LD, Sachs JP, Rosentahl. Y (2003) A 1600-year history of the Labrador Current off Nova Scotia. Clim Dyn 21, 53–62. https://doi.org/10.1007/s00382-003-0316-6

    Article  Google Scholar 

  56. Knudsen MF, Seidenkrantz M-S, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat Commun 2:178. https://doi.org/10.1038/ncomms1186

    Article  Google Scholar 

  57. Knies J, Pathirana I, Banica PCA (2017). Sea-ice dynamics in an Arctic coastal polynya during the past 6500 years. Arktos. https://doi.org/10.1007/s41063-016-0027-y

    Article  Google Scholar 

  58. Kobashi T, Menviel L, Jeltsch-Thömmes A, Vinther BM, Box JE, Muscheler R, Ohmura A (2017) Volcanic influence on centennial to millennial Holocene Greenland temperature change. Sci Rep 7(1):1441. https://doi.org/10.1038/s41598-017-01451-7

    Article  Google Scholar 

  59. Kolling HM, Stein R, Fahl K, Perner K, Moros M (2017) Short-term variability in late Holocene sea ice cover on the East Greenland Shelf and its driving mechanisms. Palaeogeogr Palaeoclimatol Palaeoecol 485:336–350. https://doi.org/10.1016/j.palaeo.2017.06.024

    Article  Google Scholar 

  60. Krawczyk DW, Witkowski A, Lloyd J, Moros M, Harff J, Kuijpers A (2013) Late-Holocene diatom derived seasonal variability in hydrological conditions off Disko Bay, West Greenland. Quat Sci Rev 67:93–104. https://doi.org/10.1016/j.quascirev.2013.01.025

    Article  Google Scholar 

  61. Krawczyk DW, Witkowski A, Moros M, Lloyd JM, Høyer JL, Miettinen A, Kuijpers A (2017) Quantitative reconstruction of Holocene sea ice and sea surface temperature off West Greenland from the first regional diatom data set. Paleoceanography 32(1):18–40. https://doi.org/10.1002/2016PA003003

    Article  Google Scholar 

  62. Krawczyk DW, Witkowski A, Wroniecki M, Waniek J, Kurzydłowski KJ, Płociński T (2012). Reinterpretation of two diatom species from the West Greenland margin—Thalassiosira kushirensis and Thalassiosira antarctica var. borealis—hydrological consequences. Mar Micropaleontol. https://doi.org/10.1016/j.marmicro.2012.02.004

    Article  Google Scholar 

  63. Krawczyk D, Witkowski A, Moros M, Lloyd J, Kuijpers A, Kierzek A (2010). Late-Holocene diatom-inferred reconstruction of temperature variations of the West Greenland Current from Disko Bugt, central West Greenland. Holocene. https://doi.org/10.1177/0959683610371993

    Article  Google Scholar 

  64. Kremer A, Stein R, Fahl K, Ji Z, Yang Z, Wiers S, Matthiessen J, Forwick M, Löwemark L, O’Regan M, Chen J, Snowball I (2018) Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka—reconstructions from biomarker records. Quat Sci Rev 182:93–108. https://doi.org/10.1016/j.quascirev.2017.12.016

    Article  Google Scholar 

  65. Lamb HH (1977) Climate: present, past and future. Vol 2. Methuen and Co. Ltd., London

    Google Scholar 

  66. Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37

    Article  Google Scholar 

  67. Larsen NK, Kjær KH, Lecavalier B, Bjørk AA, Colding S, Huybrechts P, Olsen J (2015). The response of the southern Greenland ice sheet to the Holocene thermal maximum. Geology. https://doi.org/10.1130/G36476.1

    Article  Google Scholar 

  68. Leventer A (1998). The fate of Antarctic “sea ice diatoms” and their use as paleoenvironmental indicators. Antarct Sea Ice Biol Process Interact Var Antarct Res Ser. https://doi.org/10.1029/AR073p0121

    Article  Google Scholar 

  69. Levy LB, Larsen NK, Davidson TA, Strunk A, Olsen J, Jeppesen E (2017) Contrasting evidence of Holocene ice margin retreat, south-western Greenland. J Quat Sci. https://doi.org/10.1002/jqs.2957

    Article  Google Scholar 

  70. Ljungqvist FC (2010) A new reconstruction of temperature variability in the extra tropical Northern Hemisphere during the last two millennia. Geogr Annal Ser A Phys Geogr 92(3):339–351. https://doi.org/10.1111/j.1468-0459.2010.00399.x

    Article  Google Scholar 

  71. Lloyd J, Moros M, Perner K, Telford RJ, Kuijpers A, Jansen E, McCarthy D (2011) A 100 year record of ocean temperature control on the stability of Jakobshavn Isbrae, West Greenland. Geology 39(9):867–870. https://doi.org/10.1130/G32076.1

    Article  Google Scholar 

  72. Massé G, Belt ST, Crosta X, Schmidt S, Snape I, Thomas DN, Rowland SJ (2011) Highly branched isoprenoids as proxies for variable sea ice conditions in the Southern Ocean. Antarct Sci 23(5):487–498. https://doi.org/10.1017/S0954102011000381

    Article  Google Scholar 

  73. Massé G, Rowland SJ, Sicre MA, Jacob J, Jansen E, Belt ST (2008) Abrupt climate changes for Iceland during the last millennium: evidence from high resolution sea ice reconstructions. Earth Planet Sci Lett 269(3–4):564–568. https://doi.org/10.1016/j.epsl.2008.03.017

    Article  Google Scholar 

  74. Méheust M, Stein R, Fahl K, Max L, Riethdorf JR (2016) High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years. Geo-Mar Lett 36:101–111. https://doi.org/10.1007/s00367-015-0432-4

    Article  Google Scholar 

  75. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem. https://doi.org/10.1016/S0146-6380(97)00049-1

    Article  Google Scholar 

  76. Miller GH, Geirsdóttir Á, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Thordarson T (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39(2):1–5. https://doi.org/10.1029/2011GL050168

    Article  Google Scholar 

  77. Moros M, Jensen K, Kuijpers G, A (2006) Mid- to late-Holocene hydrological and climatic variability in Disko Bugt, central West Greenland. Holocene 3:357–367

    Article  Google Scholar 

  78. Moros M, Andrews JT, Eberl DD, Jansen E (2006) Holocene history of drift ice in the northern North Atlantic: evidence for different spatial and temporal modes. Paleoceanography 21(2):1–10. https://doi.org/10.1029/2005PA001214

    Article  Google Scholar 

  79. Moros M, Jansen E, Oppo DW, Giraudeau J, Kuijpers A (2012). Reconstruction of the late-Holocene changes in the Sub-Arctic Front position at the Reykjanes Ridge,north Atlantic. Holocene 22(8):877–886. http://www.scopus.com/inward/record.url?eid=2-s2.0-84863557938&partnerID=40&md5=75bf62fce6e5b761b6b2f5a2fa104ec5

  80. Moros M, Lloyd JM, Perner K, Krawczyk D, Blanz T, de Vernal A, Jansen E (2016) Surface and sub-surface multi-proxy reconstruction of middle to late Holocene palaeoceanographic changes in Disko Bugt, West Greenland. Quat Sci Rev 132:146–160. https://doi.org/10.1016/j.quascirev.2015.11.017

    Article  Google Scholar 

  81. Müller J, Massé G, Stein R, Belt ST (2009) Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat Geosci 2(11):772–776. https://doi.org/10.1038/ngeo665

    Article  Google Scholar 

  82. Müller J, Stein R (2014) High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice-ocean interactions during abrupt climate shifts. Earth Planet Sci Lett 403:446–455. https://doi.org/10.1016/j.epsl.2014.07.016

    Article  Google Scholar 

  83. Müller J, Wagner A, Fahl K, Stein R, Prange M, Lohmann G (2011) Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet Sci Lett 306(3–4):137–148. https://doi.org/10.1016/j.epsl.2011.04.011

    Article  Google Scholar 

  84. Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14. https://doi.org/10.1016/j.quascirev.2012.04.024

    Article  Google Scholar 

  85. Navarro-Rodriguez A, Belt ST, Knies J, Brown TA (2013) Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: Implications for palaeo sea ice reconstructions. Quat Sci Rev 79:26–39. https://doi.org/10.1016/j.quascirev.2012.11.025

    Article  Google Scholar 

  86. Nichols PD, Jones GJ, De Leeuw JW, Johns RBB (1984). The fatty acid and sterol composition of two marine dinoflagellates. Phytochemistry. https://doi.org/10.1016/S0031-9422(00)82605-9

    Article  Google Scholar 

  87. Nielsen N, Humlum O, Hansen BU (2001) Meteorological Observations in 2000 at the Arctic Station, Qeqertarsuaq (69°15′N), Central West Greenland. Dan J Geogr. https://doi.org/10.1080/00167223.2001.10649458

    Article  Google Scholar 

  88. Nørgaard-Pedersen N, Mikkelsen N (2009) 8000 year marine record of climate variability and fjord dynamics from Southern Greenland. Mar Geol 264(3–4):177–189. https://doi.org/10.1016/j.margeo.2009.05.004

    Article  Google Scholar 

  89. NSIDC, Boulder. http://nsidc.org/ (accessed August 2017)

  90. Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5,200 years. Nat Geosci 5(11):1–14. https://doi.org/10.1038/ngeo1589

    Article  Google Scholar 

  91. Ortega P, Lehner F, Swingedouw D, Masson-Delmotte V, Raible CC, Casado M, Yiou P (2015) A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523(7558):71–74. https://doi.org/10.1038/nature14518

    Article  Google Scholar 

  92. Ouellet-Bernier MM, de Vernal A, Hillaire-Marcel C, Moros M (2014) Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene. Holocene 24(11):1573–1583. https://doi.org/10.1177/0959683614544060

    Article  Google Scholar 

  93. Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. Eos Trans Am Geophys Union 77(39):379. https://doi.org/10.1029/96EO00259

    Article  Google Scholar 

  94. Pearce C, Seidenkrantz MS, Kuijpers A, Reynisson NF (2014) A multi-proxy reconstruction of oceanographic conditions around the Younger Dryas-Holocene transition in Placentia Bay. Nfld Mar Micropaleontol 112:39–49. https://doi.org/10.1016/j.marmicro.2014.08.004

    Article  Google Scholar 

  95. Perner K, Moros M, Jansen E, Kuijpers A, Troelstra SR, Prins MA (2018)Subarctic Front migration at the Reykjanes Ridge during the mid- to late Holocene:evidence from planktic foraminifera. Boreas. https://doi.org/10.1111/bor.12263

    Article  Google Scholar 

  96. Perner K, Jennings AE, Moros M, Andrews JT, Wacker L (2016) Interaction between warm Atlantic-sourced waters and the East Greenland Current in northern Denmark Strait (68°N) during the last 10 600 cal a BP. J Quat Sci 31:472–483. https://doi.org/10.1002/jqs.2872

    Article  Google Scholar 

  97. Perner K, Moros M, Jennings AE, Lloyd JM, Knudsen KL (2013) Holocene palaeoceanographic evolution off West Greenland. Holocene 23(3):374–387. https://doi.org/10.1177/0959683612460785

    Article  Google Scholar 

  98. Perner K, Moros M, Lloyd JM, Kuijpers A, Telford RJ, Harff J (2011) Centennial scale benthic foraminiferal record of late Holocene oceanographic variability in Disko Bugt, West Greenland. Quat Sci Rev 30(19–20):2815–2826. https://doi.org/10.1016/j.quascirev.2011.06.018

    Article  Google Scholar 

  99. Pieńkowski AJ, Gill NK, Furze MFA, Mugo SM, Marret F, Perreaux A (2017) Arctic sea-ice proxies: comparisons between biogeochemical and micropalaeontological reconstructions in a sediment archive from Arctic Canada. Holocene 27:665–682. https://doi.org/10.1177/0959683616670466

    Article  Google Scholar 

  100. Polyak L, Belt ST, Cabedo-Sanz P, Yamamoto M, Park YH (2016) Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies. Holocene 26:1810–1821. https://doi.org/10.1177/0959683616645939

    Article  Google Scholar 

  101. Prahl FG, Muehlhausen LA (1989) Lipid biomarkers as geochemical tools for paleoceanographic study. Prod Ocean Present Past 27:1–289

    Google Scholar 

  102. Rampen SW, Abbas BA, Schouten S, Damsté JSS (2010) A comprehensive study of sterols in marine diatoms (Bacillariophyta): Implications for their use as tracers for diatom productivity. Limnol Oceanogr 55:91–105. https://doi.org/10.4319/lo.2010.55.1.0091

    Article  Google Scholar 

  103. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Weyhenmeyer CE (2009) INTCAL 09 and MARINE09 aadiocarbon age calibration curves, 0–50,000 years Cal BP. Radiocarbon. https://doi.org/10.2458/azu_js_rc.51.3569

    Article  Google Scholar 

  104. Ribeiro S, Sejr MK, Limoges A, Heikkilä M, Andersen TJ, Tallberg P, Weckström K, Husum K, Forwick M, Dalsgaard T, Massé G, Seidenkrantz MS, Rysgaard S (2017) Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: spatial distribution and implications for palaeoenvironmental studies. Ambio 46:106–118. https://doi.org/10.1007/s13280-016-0894-2

    Article  Google Scholar 

  105. Ribeiro S, Moros M, Ellegaard M, Kuijpers A (2012) Climate variability in West Greenland during the past 1500 years: evidence from a high-resolution marine palynological record from Disko Bay. Boreas 41(1):68–83. https://doi.org/10.1111/j.1502-3885.2011.00216.x

    Article  Google Scholar 

  106. Ribergaard MH, Kliem N, Jespersen M (2006) HYCOM for the North Atlantic Ocean with Special Emphasis onWest GreenlandWater. Technical Report 06 – 0. http://www.dmi.dk/dmi/tr06-07

  107. Richerol T, Fréchette B, Rochon A, Pienitz R (2016) Holocene climate history of the Nunatsiavut (northern Labrador, Canada) established from pollen and dinoflagellate cyst assemblages covering the past 7000 years. Holocene 26:44–60. https://doi.org/10.1177/0959683615596823

    Article  Google Scholar 

  108. Rignot E, Koppes M, Velicogna I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat Geosci. https://doi.org/10.1038/ngeo765

    Article  Google Scholar 

  109. Risebrobakken B (2003). A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanography 18(1):1017. http://www.agu.org/pubs/crossref/2003/2002PA000764.shtml

  110. Roncaglia L, Kuijpers A (2004). Palynofacies analysis and organic-walled dinoflagellate cysts in late-Holocene sediments from Igaliku Fjord, South Greenland. Holocene. https://doi.org/10.1191/0959683604hl700rp

    Article  Google Scholar 

  111. Rontani JF, Charrière B, Sempéré R, Doxaran D, Vaultier F, Vonk JE, Volkman JK (2014) Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic. Org Geochem. https://doi.org/10.1016/j.orggeochem.2014.06.002

    Article  Google Scholar 

  112. Rowland SJ, Allard WG, Belt ST, Massé G, Robert JM, Blackburn S, Volkman JK (2001) Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry 58(5):717–728. https://doi.org/10.1016/S0031-9422(01)00318-1

    Article  Google Scholar 

  113. Ruan J, Huang Y, Shi X, Liu Y, Xiao W, Xu Y (2017) Holocene variability in sea surface temperature and sea ice extent in the northern Bering Sea: a multiple biomarker study. Org Geochem 113:1–9. https://doi.org/10.1016/j.orggeochem.2017.08.006

    Article  Google Scholar 

  114. Ruzmaikin A, Feynman J, Jiang X, Noone DC, Waple AM, Yung YL (2004) The pattern of northern hemisphere surface air temperature during prolonged periods of low solar output. Geophys Res Lett 31(12):2–5. https://doi.org/10.1029/2004GL019955

    Article  Google Scholar 

  115. Schmith T, Hansen C (2003) Fram strait ice export during the nineteenth and twentieth centuries reconstructed from a multiyear sea ice index from southwestern Greenland. J Clim 16(16):2782–2791. https://doi.org/10.1175/1520-0442(2003)016<2782:FSIEDT>2.0.CO;2

    Article  Google Scholar 

  116. Schweinsberg AD, Briner JP, Miller GH, Bennike O, Thomas EK (2017) Local glaciation in West Greenland linked to North Atlantic ocean circulation during the Holocene. Geology 45(3):195–198. https://doi.org/10.1130/G38114.1

    Article  Google Scholar 

  117. Seidenkrantz MS, Roncaglia L, Fischel A, Heilmann-Clausen C, Kuijpers A, Moros M (2008) Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland. Mar Micropaleontol 68(1–2):66–83. https://doi.org/10.1016/j.marmicro.2008.01.006

    Article  Google Scholar 

  118. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Global Planet Change 77(1–2):85–96

    Article  Google Scholar 

  119. Sha L, Jiang H, Knudsen KL (2012) Diatom evidence of climatic change in Holsteinsborg Dyb, west of Greenland, during the last 1200 years. Holocene 22(3):347–358. https://doi.org/10.1177/0959683611423684

    Article  Google Scholar 

  120. Sha L, Jiang H, Seidenkrantz MS, Li D, Andresen CS, Knudsen KL, Zhao M (2017) A record of Holocene sea-ice variability off West Greenland and its potential forcing factors. Palaeogeogr Palaeoclimatol Palaeoecol 475:115–124. https://doi.org/10.1016/j.palaeo.2017.03.022

    Article  Google Scholar 

  121. Sha L, Jiang H, Seidenkrantz MS, Muscheler R, Zhang X, Knudsen MF, Zhang W (2016) Solar forcing as an important trigger for West Greenland sea-ice variability over the last millennium. Quat Sci Rev 131:148–156. https://doi.org/10.1016/j.quascirev.2015.11.002

    Article  Google Scholar 

  122. Sha L, Jiang H, Seidenkrantz MS, Knudsen KL, Olsen J, Kuijpers A, Liu Y (2014) A diatom-based sea-ice reconstruction for the Vaigat Strait (Disko Bugt, West Greenland) over the last 5000 year. Palaeogeogr Palaeoclimatol Palaeoecol 403:66–79. https://doi.org/10.1016/j.palaeo.2014.03.028

    Article  Google Scholar 

  123. Sicre MA, Jacob J, Ezat U, Rousse S, Kissel C, Yiou P, Turon JL (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth Planet Sci Lett 268(1–2):137–142. https://doi.org/10.1016/j.epsl.2008.01.011

    Article  Google Scholar 

  124. Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F, Woodruff TE (2015) Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature. https://doi.org/10.1038/nature14565

    Article  Google Scholar 

  125. Smik L, Cabedo-Sanz P, Belt ST (2016) Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: a further development of the PIP25 index. Org Geochem 92:63–69. https://doi.org/10.1016/j.orggeochem.2015.12.007

    Article  Google Scholar 

  126. Solignac S, De Vernal A, Hillaire-Marcel C (2004) Holocene sea-surface conditions in the North Atlantic - Contrasted trends and regimes in the western and eastern sectors (Labrador Sea vs. Iceland Basin). Quat Sci Rev 23(3–4):319–334. https://doi.org/10.1016/j.quascirev.2003.06.003

    Article  Google Scholar 

  127. Stein R, Macdonald RW (2004) Geochemical Proxies Used for Organic Carbon Source Identification in Arctic Ocean Sediments. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  128. Stein R, Fahl K (2013) Biomarker proxy shows potential for studying the entire Quaternary Arctic sea ice history. Org Geochem 55:98–102. https://doi.org/10.1016/j.orggeochem.2012.11.005

    Article  Google Scholar 

  129. Stein R, Fahl K (2012) A first southern Lomonosov Ridge (Arctic Ocean) 60 ka IP25 sea-ice record. Polarforschung 82:83–86

    Google Scholar 

  130. Stein R, Fahl K, Müller J (2012) Proxy reconstruction of Cenozoic Arctic Ocean sea-ice history—from IRD to IP25-. Polarforschung 82(1):37–71

    Google Scholar 

  131. Stein R, Fahl K, Gierz P, Niessen F, Lohmann G (2017) Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat Commun 8:373. https://doi.org/10.1038/s41467-017-00552-1

    Article  Google Scholar 

  132. Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam S, Il (2017) Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J Quat Sci 32:362–379. https://doi.org/10.1002/jqs.2929

    Article  Google Scholar 

  133. Stein R, Fahl K, Schreck M, Knorr G, Niessen F, Forwick M, Lohmann G (2016). Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat Commun, 7:11148. http://www.nature.com/ncomms/2016/160404/ncomms11148/full/ncomms11148.html

  134. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change. https://doi.org/10.1007/s10584-011-0101-1

    Article  Google Scholar 

  135. Summons RE, Capon RJ, Stranger C, Barrow RA (1993) The structure of a new C25 isoprenoid alkene biomarker from diatomaceous microbial communities. Aust J Chem. https://doi.org/10.1071/CH9930907

    Article  Google Scholar 

  136. Tang CCL, Ross CK, Yao T, Petrie B, DeTracey BM, Dunlap E (2004) The circulation, water masses and sea-ice of Baffin Bay. Prog Oceanogr 63(4):183–228. https://doi.org/10.1016/j.pocean.2004.09.005

    Article  Google Scholar 

  137. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science 324(5923):78–80. https://doi.org/10.1126/science.1166349

    Article  Google Scholar 

  138. Vare LL, Massé G, Gregory TR, Smart CW, Belt ST (2009) Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quat Sci Rev 28(13–14):1354–1366. https://doi.org/10.1016/j.quascirev.2009.01.013

    Article  Google Scholar 

  139. Vare LL, Massé G, Belt ST (2010) A biomarker-based reconstruction of sea ice conditions for the Barents Sea in recent centuries. Holocene 20:637–643. https://doi.org/10.1177/0959683609355179

    Article  Google Scholar 

  140. Vinnikov KY, Robock A, Stouffer RJ, Walsh JE, Parkinson CL, Cavalieri DJ, Zakharov VF (1999) Global Warming and Northern Hemisphere Sea Ice Extent. Science. https://doi.org/10.1126/science.286.5446.1934

    Article  Google Scholar 

  141. Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK, Buchardt SL, Heinemeier J (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res Atmos 111(13):1–11. https://doi.org/10.1029/2005JD006921

    Article  Google Scholar 

  142. Volkman JK, Revill AT, Holdsworth DG, Fredericks D (2008) Organic matter sources in an enclosed coastal inlet assessed using lipid biomarkers and stable isotopes. Org Geochem. https://doi.org/10.1016/j.orggeochem.2008.02.014

    Article  Google Scholar 

  143. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506. https://doi.org/10.1007/s00253-002-1172-8

    Article  Google Scholar 

  144. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9(2):83–99

    Article  Google Scholar 

  145. Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW (1993) Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org Geochem 20(1):7–15

    Article  Google Scholar 

  146. Wassmann P, Duarte CM, Agustí S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Chang Biol 17:1235–1249. https://doi.org/10.1111/j.1365-2486.2010.02311.x

    Article  Google Scholar 

  147. Weidick A, Bennike O, Grafisk S (2007) Quaternary glaciation history and glaciology of Jakobshavn Isbrae and the Disko Bugt region, West Greenland: a review. Geol Surv Den Greenl Bull 14:26–49

    Google Scholar 

  148. Werner K, Müller J, Husum K, Spielhagen RF, Kandiano ES, Polyak L (2015) Holocene sea subsurface and surface water masses in the Fram Strait—comparisons of temperature and sea-ice reconstructions. Quat Sci Rev. https://doi.org/10.1016/j.quascirev.2015.09.007

    Article  Google Scholar 

  149. Xiao X, Zhao M, Luise K, Sha L, Eiríksson J, Gudmundsdóttir E, Jiang H, Guo Z (2017) Deglacial and Holocene sea–ice variability north of Iceland and response to ocean circulation changes. Earth Planet Sci Lett 472:14–24. https://doi.org/10.1016/j.epsl.2017.05.006

    Article  Google Scholar 

  150. Xiao X, Fahl K, Stein R (2013) Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and sea-ice coverage. Quat Sci Rev 79:40–52. https://doi.org/10.1016/j.quascirev.2012.11.028

    Article  Google Scholar 

  151. Xiao X, Stein R, Fahl K (2015) MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: reconstruction from biomarkers. Paleoceanography 30(7):969–983. https://doi.org/10.1002/2015PA002814

    Article  Google Scholar 

  152. Xiao X, Fahl K, Müller J, Stein R (2015) Sea-ice distribution in the modern Arctic Ocean: biomarker records from trans-Arctic Ocean surface sediments. Geochim Cosmochim Acta 155:16–29. https://doi.org/10.1016/j.gca.2015.01.029

    Article  Google Scholar 

  153. Young NE, Schweinsberg AD, Briner JP, Schaefer JM (2015) Glacier maxima in Baffin Bay during the Medieval Warm Period coeval with Norse settlement. Sci Adv 1(11). https://doi.org/10.1126/sciadv.1500806

    Article  Google Scholar 

  154. Yunker MB, Macdonald RW, Veltkamp DJ, Cretney WJ (1995) Terrestrial and marine biomarkers in a seasonally ice-covered Arctic estuary—integration of multivariate and biomarker approaches. Mar Chem 49(1):1–50. https://doi.org/10.1016/0304-4203(94)00057-K

    Article  Google Scholar 

  155. Yruela I, Barbe A, Grimalt JO (1990) Determination of double bond position and geometry in linear and highly branched hydrocarbons and fatty acids from gas chromatography-mass spectrometry of epoxides and diols generated by stereospecific resin hydration. J Chromatogr Sci. https://doi.org/10.1093/chromsci/28.8.421

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the Deutsche Forschungsgemeinschaft through ‘ArcTrain’ (GRK 1904). We wish to thank the captain, crew and science party of the R/V Maria S. Merian expedition MSM 05/03. We would like to thank Walter Luttmer for laboratory support. Thanks to Simon Belt and colleagues (Biogeochemistry Research Centre, University of Plymouth) for providing the internal standard for IP25 analysis. Kerstin Perner has been funded through the DFG Grant PE2071/2–2. We thank two anonymous reviewers for the comments, which clearly led to an improved version of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriette M. Kolling.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

41063_2018_45_MOESM1_ESM.tif

Supplementary Fig S1 Satellite measured monthly sea ice concentrations in Baffin Bay from 1978-2015 (Cavalieri et al., 1996; updated 2015). The white diamond indicates the position of Core 343310. (TIF 8239 KB)

41063_2018_45_MOESM2_ESM.tif

Supplementary Fig S2: Age depth model for (a) gravity core 343310-5-1 based on Perner et al. (2011). And (b) multi core 343310-2-2 based on Llyod et al. (2011). (TIF 8512 KB)

41063_2018_45_MOESM3_ESM.tif

Supplementary Fig S3 Biomarker concentrations (a) campesterol+ß-sitosterol, (b) dinosterol, (c) brassicasterol, (d) HBI III, (e) HBI II, (f) IP25 (all in µg/g sediment) and total organic carbon content (TOC; in %) of Core 343310 against depth (cm). (TIF 6825 KB)

41063_2018_45_MOESM4_ESM.tif

Supplementary Fig S4 Comparison of the indices PIIIIP25, PBIP25 and PDIP25 (red line) from Core 343310. PBIP25 and PDIP25 showing nearly identical values. (TIF 1718 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolling, H.M., Stein, R., Fahl, K. et al. New insights into sea ice changes over the past 2.2 kyr in Disko Bugt, West Greenland. Arktos 4, 1–20 (2018). https://doi.org/10.1007/s41063-018-0045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0045-z

Keywords

Navigation