Advertisement

arktos

, 4:7 | Cite as

Borehole temperature reconstructions reveal differences in past surface temperature trends for the permafrost in the Laptev Sea region, Russian Arctic

  • Fabian Kneier
  • Pier Paul Overduin
  • Moritz Langer
  • Julia Boike
  • Mikhail N. Grigoriev
Original Article

Abstract

In central Siberia, past temperature changes have been driving permafrost warming in a region with large organic carbon reserves stored in the perennially frozen ground. However, local arctic temperature histories in the ice-rich permafrost areas of the remote Russian Arctic are sparsely known or based on proxy data with potential seasonal biases and underrepresented in circum-Arctic reconstructions. This study employed two inversion schemes (particle swarm optimization and a least-square method) to reconstruct temperature histories for the past 200–300 years in the Laptev Sea region from two permafrost borehole temperature records. These data were evaluated against larger scale reconstructions from the region. Distinct differences between the western Laptev Sea and the Lena Delta sites were recognized, such as a transition to warmer temperatures a century later in the western Laptev Sea as well as a peak in warming 3 decades later. The local permafrost surface temperature history at Sardakh Island in the Lena Delta was reminiscent of the circum-Arctic regional average trends. However, Mamontov Klyk in the western Laptev Sea was consistent to Arctic trends only in the most recent decade and was more similar to northern hemispheric mean trends. Both sites are consistent with a rapid recent warming that is of synoptic scale. Different environmental influences such as synoptic atmospheric circulation and sea ice may be responsible for differences between the sites. The shallow permafrost boreholes provide missing well-resolved short-scale temperature information in the coastal permafrost tundra of the Arctic. As local differences from circum-Arctic reconstructions, such as later warming and higher warming magnitude, were shown to exist in this region, our results provide a basis for local surface temperature record parameterization of climate models, and in particular of permafrost models.

Keywords

Temperature reconstruction Borehole reconstruction Permafrost Siberian Arctic Temperature history GST 

Notes

Acknowledgements

This work was partially funded by a Helmholtz Association Joint Russian-German Research Group (HGF JRG-100). The authors thank Frank Günther, Stefan Kruse, and Heidrun Matthes for assisting in data compilation; Tomas Opel and Volker Rath for helpful comments; and two anonymous reviewers for detailed comments and suggestions.

Compliance with ethical standard

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

41063_2018_41_MOESM1_ESM.docx (361 kb)
Supplementary material 1 (DOCX 362 DOCX)

References

  1. 1.
    Andreev A, Tarasov P, Schwamborn G, Ilyashuk B, Ilyashuk E, Bobrov A, Klimanov V, Rachold V, Hubberten HW (2004) Holocene paleoenvironmental records from Nikolay Lake, Lena River Delta, Arctic Russia. Palaeogeogr Palaeoclimatol Palaeoecol 209:197–217.  https://doi.org/10.1016/j.palaeo.2004.02.010 CrossRefGoogle Scholar
  2. 2.
    Andreev AA, Schirrmeister L, Tarasov PE, Ganopolski A, Brovkin V, Siegert C, Wetterich S, Hubberten HW (2011) Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quat Sci Rev 30:2182–2199.  https://doi.org/10.1016/j.quascirev.2010.12.026 CrossRefGoogle Scholar
  3. 3.
    Are F, Reimnitz E (2000) An overview of the Lena River delta setting: geology, tectonics, geomorphology, and hydrology. J Coast Res 16(4):1083–1093Google Scholar
  4. 4.
    Atlas Arktiki (1985) GUGK, Moscow (in Russian)Google Scholar
  5. 5.
    Bauch H, Mueller-Lupp T, Taldenkova E, Spielhagen R, Kassens H, Grootes P, Thiede J, Heinemeier J, Petryashov V (2001) Chronology of the Holocene transgression at the North Siberian margin. Global Planet Chang 31:125–139.  https://doi.org/10.1016/S0921-8181(01)00116-3
  6. 6.
    Beltrami H, Ferguson G, Harris RN (2005) Long-term tracking of climate change by underground temperatures. Geophys Res Lett 32(19):L19707.  https://doi.org/10.1029/2005GL023714 CrossRefGoogle Scholar
  7. 7.
    Boike J, Kattenstroth B, Abramova K, Bornemann N, Chetverova A, Fedorova I, Fröb K, Grigoriev M, Grüber M, Kutzbach L, Langer M, Minke M, Muster S, Piel K, Pfeiffer EM, Stoof G, Westermann S, Wischnewski K, Wille C, Hubberten HW (2013) Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011). Biogeosciences 10(3):2105–2128.  https://doi.org/10.5194/bg-10-2105-2013 CrossRefGoogle Scholar
  8. 8.
    Boike J, Grau T, Heim B, Günther F, Langer M, Muster S, Gouttevin I, Lange S (2016) Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: wetting, drying, and fires. Global Planet Chang 139:116–127.  https://doi.org/10.1016/j.gloplacha.2016.01.001 CrossRefGoogle Scholar
  9. 9.
    Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106(D3):2929–2941.  https://doi.org/10.1029/2000JD900617 CrossRefGoogle Scholar
  10. 10.
    Brown RD, Brasnett B (2015) Canadian Meteorological Centre (CMC) Daily snow depth analysis data. Environment Canada, 2010. Boulder, Colorado USA: National Snow and Ice Data Center. https://nsidc.org/data/docs/daac/nsidc0447_CMC_snow_depth/ (updated annually). Accessed 2017
  11. 11.
    Bulygina ON, Razuvaev VN (2012) Daily Temperature and precipitation data for 518 Russian Meteorological Stations. Technical report, carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.  https://doi.org/10.3334/CDIAC/cli.100
  12. 12.
    Carson CJ, McLaren S, Roberts JL, Boger SD, Blankenship DD (2014) Hot rocks in a cold place: high sub-glacial heat flow in East Antarctica. J Geol Soc 171(1):9–12.  https://doi.org/10.1144/jgs2013-030 CrossRefGoogle Scholar
  13. 13.
    CAVM Team (2003) Circumpolar Arctic Vegetation Map (1:7,500,000 scale). Conservation of Arctic flora and fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, Alaska. http://www.geobotany.uaf.edu/cavm/finalcavm/index.html. Accessed 2016
  14. 14.
    Chapman DS, Bartlett MG, Harris RN (2004) Comment on “Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions” by M. E. Mann and G. Schmidt. Geophys Res Lett 31(7):L07205.  https://doi.org/10.1029/2003GL019054 CrossRefGoogle Scholar
  15. 15.
    Clow GD (1992) The extent of temporal smearing in surface-temperature histories derived from borehole temperature measurements. Global Planet Chang 6:81–86.  https://doi.org/10.1016/0921-8181(92)90027-8 CrossRefGoogle Scholar
  16. 16.
    Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289(5477):270–277.  https://doi.org/10.1126/science.289.5477.270 CrossRefGoogle Scholar
  17. 17.
    Davies JH (2013) Global map of solid Earth surface heat flow. Geochem Geophys Geosyst 14:4608–4622.  https://doi.org/10.1002/ggge.20271 CrossRefGoogle Scholar
  18. 18.
    Demezhko DY, Gornostaeva AA (2015) Late Pleistocene-Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia). Clim Past 11(4):647–652.  https://doi.org/10.5194/cp-11-647-2015 CrossRefGoogle Scholar
  19. 19.
    Demezhko DY, Shchapov VA (2001) 80,000 years ground surface temperature history inferred from the temperature-depth log measured in the superdeep hole SG-4 (the Urals, Russia). Global Planet Chang 29:219–230.  https://doi.org/10.1016/S0921-8181(01)00091-1 CrossRefGoogle Scholar
  20. 20.
    Demezhko DY, Solomina ON (2009) Ground surface temperature variations on Kunashir Island in the last 400 years inferred from borehole temperature data and tree-ring records. Dokl Earth Sci 426(1):628–631.  https://doi.org/10.1134/S1028334X09040266 CrossRefGoogle Scholar
  21. 21.
    Ebbesen S, Kiwitz P, Guzzella L (2012) A generic particle swarm optimization Matlab function. Am Control Conf 2012:1519–1524Google Scholar
  22. 22.
    Ehlers J, Gibbard PL (2003) Extent and chronology of glaciations. Quat Sci Rev 22(15–17):1561–1568.  https://doi.org/10.1016/S0277-3791(03)00130-6 CrossRefGoogle Scholar
  23. 23.
    Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563):2250–2253.  https://doi.org/10.1126/science.1066208 CrossRefGoogle Scholar
  24. 24.
    Galabala RO (1987) New data on the structure of the Lena Delta. In: Pokhialianen VP (ed) Quaternary Period Northeast Asia. SVKNII DVO AN SSSR, Magadan, pp 152–171 (in Russian)Google Scholar
  25. 25.
    Grakhanov S, Prokopiev A, Grakhanov O, Tarabukin V, Soloviev E (2013) New data on the geology of the Lena River delta area and the diamond potential of the Arctic region (in Russian). Fatherl Geol 5:33–40Google Scholar
  26. 26.
    Grigoriev M (1993) Cryomorphogenesis of the Lena River mouth area. Permafrost Institute Press SB RAS, Yakutsk (in Russian)Google Scholar
  27. 27.
    Grigoriev M, Imaev V, Imaeva L, Kozmin B, Kunitsky V, Larionov A, Mikulenko K, Skryabin R, Timirshin K (1996) Geology, seismicity, and cryogenic processes in the Arctic areas of western Yakutia (in Russian). Yakutian Scientific Center SD RAS, YakutskGoogle Scholar
  28. 28.
    Grigoriev MN, Rachold V (2003) The degradation of coastal permafrost and the organic carbon balance of the Laptev and East Siberian seas Permafrost. In: Proceedings of the 8th international conference on permafrost, 21–25 July 2003, Zurich, Switzerland, Balkema, Lisse, The Netherlands, pp 319–324Google Scholar
  29. 29.
    Grigoriev NF (1966) Mnogoletnemerzlyye porody primorskoy zony Yakutii (The permafrost of the coastal zone of Yakutia, in Russian). Nauka, MoscowGoogle Scholar
  30. 30.
    Grosse G, Schirrmeister L, Malthus TJ (2006) Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena-Anabar coastal lowland. Polar Res 25(1):51–67.  https://doi.org/10.1111/j.1751-8369.2006.tb00150.x/full Google Scholar
  31. 31.
    Grosse G, Robinson J, Bryant R, Taylor M, Harper W, DeMasi A, Kyker-Snowman E, Veremeeva A, Schirrmeister L, Harden J (2013) Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia. Technical report, U.S. Geological Survey Open File Report 2013-1078Google Scholar
  32. 32.
    Günther F, Overduin PP, Yakshina IA, Opel T, Baranskaya AV, Grigoriev MN (2015) Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 9(1):151–178.  https://doi.org/10.5194/tc-9-151-2015 CrossRefGoogle Scholar
  33. 33.
    Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(4):RG4004.  https://doi.org/10.1029/2010RG000345 CrossRefGoogle Scholar
  34. 34.
    Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int J Climatol 34(3):623–642.  https://doi.org/10.1002/joc.3711 CrossRefGoogle Scholar
  35. 35.
    Harris RN, Chapman DS (2001) Mid-latitude (\(30^{\circ }\, -60^{\circ }\text{ N }\)) climatic warming inferred by combining borehole temperatures with surface air temperatures. Geophys Res Lett 28(5):747–750.  https://doi.org/10.1029/2000GL012348 CrossRefGoogle Scholar
  36. 36.
    Ho SL, Laepple T (2016) Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean. Nat Geosci 9(8):606–610.  https://doi.org/10.1038/ngeo2763 CrossRefGoogle Scholar
  37. 37.
    Huang S (2004) Merging information from different resources for new insights into climate change in the past and future. Geophys Res Lett 31(13):L13205.  https://doi.org/10.1029/2004GL019781 CrossRefGoogle Scholar
  38. 38.
    Huang S, Pollack HN, Shen PY (2000) Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature 403(6771):756–758.  https://doi.org/10.1038/35001556 CrossRefGoogle Scholar
  39. 39.
    Huang SP, Pollack HN, Shen PY (2008) A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record. Geophys Res Lett 35(13):L13703.  https://doi.org/10.1029/2008GL034187 CrossRefGoogle Scholar
  40. 40.
    Ingebritsen SE, Sanford WE, Neuzil CE (2007) Groundwater in geologic processes. Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    International Heat Flow Commission (IHFC) (2011) The global heat flow database. http://www.heatflow.und.edu/. Accessed 2017
  42. 42.
    Ippisch O (2001) Coupled transport in natural porous media. PhD thesis, University of HeidelbergGoogle Scholar
  43. 43.
    Isaksen K, Benestad RE, Harris C, Sollid JL (2007) Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys Res Lett 34(17):L17502.  https://doi.org/10.1029/2007GL031002 CrossRefGoogle Scholar
  44. 44.
    Jaume-Santero F, Pickler C, Beltrami H, Mareschal JC (2016) North American regional climate reconstruction from ground surface temperature histories. Clim Past 12(12):2181–2194.  https://doi.org/10.5194/cp-12-2181-2016 CrossRefGoogle Scholar
  45. 45.
    Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42(2):RG2002.  https://doi.org/10.1029/2003RG000143 CrossRefGoogle Scholar
  46. 46.
    Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res 117(D5):D05127.  https://doi.org/10.1029/2011JD017139 Google Scholar
  47. 47.
    Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317(5839):793–796.  https://doi.org/10.1126/science.1141038 CrossRefGoogle Scholar
  48. 48.
    Kogan A (1974) The setting of seismic works using the method KMPV-GSZ from sea ice on the shelf of the Arctic Seas (in Russian). Geophys Methods Explor Arctic 9:33–38 (L:NIIGA)Google Scholar
  49. 49.
    Kurek J, Cwynar LC, Ager TA, Abbott MB, Edwards ME (2009) Late Quaternary paleoclimate of western Alaska inferred from fossil chironomids and its relation to vegetation histories. Quat Sci Rev 28(9):799–811.  https://doi.org/10.1016/j.quascirev.2008.12.001 CrossRefGoogle Scholar
  50. 50.
    Lachenbruch A, Marshall B (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234(4777):689–696.  https://doi.org/10.1126/science.234.4777.689 CrossRefGoogle Scholar
  51. 51.
    Langer M, Westermann S, Muster S, Piel K, Boike J (2011) The surface energy balance of a polygonal tundra site in northern Siberia-Part 2: winter. Cryosphere 5(2):509–524.  https://doi.org/10.5194/tc-5-509-2011 CrossRefGoogle Scholar
  52. 52.
    Langer M, Westermann S, Heikenfeld M, Dorn W, Boike J (2013) Satellite-based modeling of permafrost temperatures in a tundra lowland landscape. Remote Sens Environ 135:12–24.  https://doi.org/10.1016/j.rse.2013.03.011 CrossRefGoogle Scholar
  53. 53.
    Lawrence DM, Slater AG, Tomas RA, Holland MM, Deser C (2008) Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys Res Lett 35(11):L11506.  https://doi.org/10.1029/2008GL033985 CrossRefGoogle Scholar
  54. 54.
    Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB, Vose RS, Rennie J (2011) An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J Geophys Res Atmos 116(D19):D19121.  https://doi.org/10.1029/2011JD016187 CrossRefGoogle Scholar
  55. 55.
    Ljungqvist FC (2010) A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr Ann Ser A Phys Geogr 92(3):339–351CrossRefGoogle Scholar
  56. 56.
    Majorowicz J, Safanda J, Skinner W (2004) Past surface temperature changes as derived from continental temperature logs—Canadian and some global examples of application of a new tool in climate change studies. Adv Geophys 47:113–174.  https://doi.org/10.1016/S0065-2687(04)47003-4 (Elsevier)CrossRefGoogle Scholar
  57. 57.
    Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26(6):759–762.  https://doi.org/10.1029/1999GL900070 CrossRefGoogle Scholar
  58. 58.
    Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105(36):13252–13257.  https://doi.org/10.1073/pnas.0805721105 CrossRefGoogle Scholar
  59. 59.
    Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124):1198–1201.  https://doi.org/10.1126/science.1228026 CrossRefGoogle Scholar
  60. 60.
    McGuire AD, Anderson LG, Christensen T, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555.  https://doi.org/10.1890/08-2025.1 CrossRefGoogle Scholar
  61. 61.
    McKay NP, Kaufman DS (2014) An extended Arctic proxy temperature database for the past 2,000 years. Sci Data 1(140):026.  https://doi.org/10.1038/sdata.2014.26 Google Scholar
  62. 62.
    Meyer H, Opel T, Laepple T, Dereviagin AY, Hoffmann K, Werner M (2015) Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat Geosci 8(2):122–125.  https://doi.org/10.1038/ngeo2349 CrossRefGoogle Scholar
  63. 63.
    Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433(7026):613–617.  https://doi.org/10.1038/nature03265 CrossRefGoogle Scholar
  64. 64.
    Mueller K (1997) Oberflächenstrukturen und Eigenschaften von Permafrostböden im nordsibirischen Lena-Delta (in German). Z Pflanzenernaehr Bodenk 160(4):497–503.  https://doi.org/10.1002/jpln.19971600410 CrossRefGoogle Scholar
  65. 65.
    National Climatic Data Center, NOAA (2015) Climate data online, station Tiksi. https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:RSM00021824/detail. Accessed 2015
  66. 66.
    Nicolsky DJ, Romanovsky VE, Romanovskii NN, Kholodov AL, Shakhova NE, Semiletov IP (2012) Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Laptev Sea region. J Geophys Res Earth Surf 117(F03):028.  https://doi.org/10.1029/2012JF002358 Google Scholar
  67. 67.
    Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308(5722):675–677.  https://doi.org/10.1126/science.1107046 CrossRefGoogle Scholar
  68. 68.
    Opel T, Fritzsche D, Meyer H (2013) Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Clim Past 9(5):2379–2389.  https://doi.org/10.5194/cp-9-2379-2013 CrossRefGoogle Scholar
  69. 69.
    Opel T, Laepple T, Meyer H, Dereviagin AY, Wetterich S (2017) Northeast Siberian ice wedges confirm Arctic winter warming over the past two millennia. Holocene.  https://doi.org/10.1177/0959683617702229
  70. 70.
    Orsi AJ, Cornuelle BD, Severinghaus JP (2012) Little ice age cold interval in West Antarctica: evidence from borehole temperature at the West Antarctic ice sheet (WAIS) divide. Geophys Res Lett 39(9):L09710.  https://doi.org/10.1029/2012GL051260 CrossRefGoogle Scholar
  71. 71.
    Overduin P, Grigoriev M, Junker R, Rachold V, Kunitsky V, Bolshiyanov D, Schirrmeister L (2007) The expedition COAST I: COAST drilling campaign 2005: subsea permafrost studies in the near-shore zone of the Laptev Sea. Rep Polar Res 550:1–40Google Scholar
  72. 72.
    PAGES 2k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6(5):339–346.  https://doi.org/10.1038/ngeo1797
  73. 73.
    Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298(5601):2171–2173.  https://doi.org/10.1126/science.1077445, http://science.sciencemag.org/content/298/5601/2171.full.pdf
  74. 74.
    Pollack HN, Smerdon JE (2004) Borehole climate reconstructions: spatial structure and hemispheric averages. J Geophys Res 109(D11):D11106.  https://doi.org/10.1029/2003JD004163 CrossRefGoogle Scholar
  75. 75.
    Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31(3):267–280.  https://doi.org/10.1029/93RG01249 CrossRefGoogle Scholar
  76. 76.
    Pollack HN, Demezhko DY, Duchkov AD, Golovanova IV, Huang S, Shchapov VA, Smerdon JE (2003) Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures. J Geophys Res 108(B4):2180.  https://doi.org/10.1029/2002JB002154 CrossRefGoogle Scholar
  77. 77.
    Reliable Prognostics (2017) Weather archive on Stolb Island. https://rp5.ru/Weather_archive_on_Stolb_Island. Accessed 23 Feb 2017
  78. 78.
    Roberts JL, Moy AD, van Ommen TD, Curran MAJ, Worby AP, Goodwin ID, Inoue M (2013) Borehole temperatures reveal a changed energy budget at Mill Island, East Antarctica, over recent decades. Cryosphere 7(1):263–273.  https://doi.org/10.5194/tc-7-263-2013 CrossRefGoogle Scholar
  79. 79.
    Romanovskii N, Hubberten H, Romanovsky V, Kholodov A (2003) Permafrost evolution under the influence of long-term climate fluctuations and glacio-eustatic sea-level variation: region of Laptev and East Siberian Seas, Russia. In: Phillips M, Springman SM, Arenson LU (eds) Permafrost: proceedings of the 8th international conference on permafrost, 21–25 July 2003, Zurich, Switzerland, Balkema, vol 2, pp 983–987Google Scholar
  80. 80.
    Romanovskii N, Hubberten H, Gavrilov A, Tumskoy V, Kholodov A (2004) Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quat Sci Rev 23(11–13):1359–1369.  https://doi.org/10.1016/j.quascirev.2003.12.014 CrossRefGoogle Scholar
  81. 81.
    Schirrmeister L, Grosse G, Kunitsky V, Magens D, Meyer H, Dereviagin A, Kuznetsova T, Andreev A, Babiy O, Kienast F, Grigoriev M, Overduin PP, Preusser F (2008) Periglacial landscape evolution and environmental changes of Arctic lowland areas for the last 60,000 years (western Laptev Sea coast, Cape Mamontov Klyk). Polar Res 27(2):249–272.  https://doi.org/10.1111/j.1751-8369.2008.00067.x CrossRefGoogle Scholar
  82. 82.
    Schirrmeister L, Kunitsky V, Grosse G, Wetterich S, Meyer H, Schwamborn G, Babiy O, Derevyagin A, Siegert C (2011) Sedimentary characteristics and origin of the Late Pleistocene ice complex on north-east Siberian Arctic coastal lowlands and islands—a review. Quat Int 241(1–2):3–25.  https://doi.org/10.1016/j.quaint.2010.04.004 CrossRefGoogle Scholar
  83. 83.
    Schirrmeister L, Froese D, Tumskoy V, Grosse G, Wetterich S (2013) Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia. In: Elias SA (ed) The encyclopedia of quaternary science, vol 3. Elsevier, Amsterdam, pp 542–552CrossRefGoogle Scholar
  84. 84.
    Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459(7246):556–559.  https://doi.org/10.1038/nature08031 CrossRefGoogle Scholar
  85. 85.
    Schwamborn G, Rachold V, Grigoriev MN (2002) Late Quaternary sedimentation history of the Lena Delta. Quat Int 89(1):119–134.  https://doi.org/10.1016/S1040-6182(01)00084-2 CrossRefGoogle Scholar
  86. 86.
    Schwamborn GJ (2004) Late quaternary sedimentation history of the Lena delta \(=\) Spätquartäre Sedimentationsgeschichte im Lena-Delta, Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), vol 471. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, GermanyGoogle Scholar
  87. 87.
    Shi F, Yang B, Mairesse A, von Gunten L, Li J, Bräuning A, Yang F, Xiao X (2013) Northern Hemisphere temperature reconstruction during the last millennium using multiple annual proxies. Clim Res 56(3):231–244.  https://doi.org/10.3354/cr01156 CrossRefGoogle Scholar
  88. 88.
    Smerdon JE, Stieglitz M (2006) Simulating heat transport of harmonic temperature signals in the Earth’s shallow subsurface: lower-boundary sensitivities. Geophys Res Lett 33(14):L14402.  https://doi.org/10.1029/2006GL026816 CrossRefGoogle Scholar
  89. 89.
    Stevens MB, Smerdon JE, Gonzalez-Rouco JF, Stieglitz M, Beltrami H (2007) Effects of bottom boundary placement on subsurface heat storage: implications for climate model simulations. Geophys Res Lett 34(2):L02702.  https://doi.org/10.1029/2006GL028546 CrossRefGoogle Scholar
  90. 90.
    Timokhov L (1994) Regional characteristics of the Laptev and the East Siberian Seas: Climate, topography, ice phases, thermohaline regime, circulation. In: Kassens H, Hubberten HW, Pryamikov SM, Stein R (eds) Russian–German Cooperation in the Siberian Shelf Seas: geo-system Laptev-Sea. Ber, Polarforsch, p 144Google Scholar
  91. 91.
    Vavrus S, Holland MM, Bailey DA (2011) Changes in Arctic clouds during intervals of rapid sea ice loss. Clim Dyn 36(7):1475–1489.  https://doi.org/10.1007/s00382-010-0816-0 CrossRefGoogle Scholar
  92. 92.
    de Vries D (1963) The thermal properties of soils. In: van Wijk R (ed) Physics of plant environment. North Holland, Amsterdam, pp 210–235Google Scholar
  93. 93.
    Wagner D, Kobabe S, Pfeiffer EM, Hubberten HW (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost Periglac Process 14(2):173–185.  https://doi.org/10.1002/ppp.443 CrossRefGoogle Scholar
  94. 94.
    Weismüller J, Wollschläger U, Boike J, Pan X, Yu Q, Roth K (2011) Modeling the thermal dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau. Cryosphere 5(3):741–757.  https://doi.org/10.5194/tc-5-741-2011 CrossRefGoogle Scholar
  95. 95.
    Winterfeld M, Schirrmeister L, Grigoriev MN, Kunitsky VV, Andreev A, Murray A, Overduin PP (2011) Coastal permafrost landscape development since the Late Pleistocene in the western Laptev Sea, Siberia. Boreas 40(4):697–713.  https://doi.org/10.1111/j.1502-3885.2011.00203.x CrossRefGoogle Scholar
  96. 96.
    Yang D, Liu B, Ye B (2005) Stream temperature changes over Lena River Basin in Siberia. Geophys Res Lett 32(5):L05401.  https://doi.org/10.1029/2004GL021568 Google Scholar
  97. 97.
    Overduin P, Rachold V, Grigoriev MN (2008) The state of subsea permafrost in the Western Laptev Nearshore zone. In: Proceedings of the 9th international conference on permafrost, Fairbanks, Alaska, pp 1345–1350Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
  2. 2.Mel’nikov Permafrost Institute, Siberian Branch, Russian Academy of SciencesYakutskRussia

Personalised recommendations