Skip to main content

Advertisement

Log in

Effect of dune sand on concrete mechanical strength and ballistic resistance

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The use of dune sand, readily available near military posts in Saharan regions, presents a strategic opportunity for cost reduction and optimization of construction operations. This study investigates the mechanical properties of concrete and its resistance against ballistic impacts by exploring the effects of partially or completely substituting ordinary sand, traditionally used in concrete production, with dune sand. Substitution rates ranged from 1 to 100%. Results indicate a notable improvement in mechanical properties, with the optimal outcome achieved through a mere 1% substitution. This resulted in ultra-high-performance concrete that exhibits improved resistance to ballistic impact. Improvements in mechanical strength were observed up to a 15% substitution. Similarly, enhancements in ballistic performance were noted for substitutions of up to 20%. Total substitution leads to compressive strengths greater than 60 MPa. These results suggest that the use of dune-sand in concrete offers promising prospects for sustainable and cost-effective military applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Luo FJ, He L, Pan Z, Duan WH, Zhao XL, Collins F (2013) Effect of very fine particles on workability and strength of concrete made with dune sand. Constr Build Mater 47:131–137

    Article  Google Scholar 

  2. Ladjel M, Chemrouk M, Bouziadi F, Boulekbache B (2022) Experimental and numerical investigation of the shrinkage of dune sand concrete containing limestone fillers subjected to different curing temperatures. Mater Struct 55(7):200

    Article  CAS  Google Scholar 

  3. Pastore G, Baird T, Vermeesch P, Bristow C, Resentini A, Garzanti E (2021) Provenance and recycling of Sahara Desert sand. Earth Sci Rev 216:103606

    Article  CAS  Google Scholar 

  4. Searle, M., & Searle, M. (2019) Rub al-Khali (Empty Quarter). Geol Oman Mt East Arab 429–442

  5. Ahmad J, Majdi A, Deifalla AF, Qureshi HJ, Saleem MU, Qaidi SM, El-Shorbagy MA (2022) Concrete made with dune sand: overview of fresh mechanical and durability properties. Materials 15(17):6152

    Article  CAS  Google Scholar 

  6. Abu Seif ESS, Sonbul AR, Hakami BAH, El-Sawy EK (2016) Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bull Eng Geol Env 75:1007–1022

    Article  CAS  Google Scholar 

  7. Abu Seif ESS (2013) Assessing the engineering properties of concrete made with fine dune sands: an experimental study. Arab J Geosci 6:857–863

    Article  Google Scholar 

  8. Al-Harthy AS, Halim MA, Taha R, Al-Jabri KS (2007) The properties of concrete made with fine dune sand. Constr Build Mater 21(8):1803–1808

    Article  Google Scholar 

  9. Kammoun Z, Trabelsi A (2020) A high-strength lightweight concrete made using straw. Mag Concr Res 72(9):460–470

    Article  Google Scholar 

  10. Trabelsi A, Kammoun Z (2020) Mechanical properties and impact resistance of a high-strength lightweight concrete incorporating prickly pear fibres. Constr Build Mater 262:119972

    Article  Google Scholar 

  11. Khattab E (2016) Effects of incorporating dune sand as fine aggregate replacement in self-compacting concrete. Key Eng Mater 668:189–196

    Article  Google Scholar 

  12. Rennani FZ, Makani A, Agha N, Tafraoui A, Benmerioul F, Zaoiai S (2020) Mechanical properties of high-performance concrete made incorporating dune sand as fine aggregate. Revista Romana de Inginerie Civila 11(1):37–46

    Google Scholar 

  13. Lee E, Ko J, Yoo J, Park S, Nam J (2021) Analysis of the aggregate effect on the compressive strength of concrete using dune sand. Appl Sci 11(4):1952

    Article  CAS  Google Scholar 

  14. Guettala S, Mezghiche B (2011) Compressive strength and hydration with age of cement pastes containing dune sand powder. Constr Build Mater 25(3):1263–1269

    Article  Google Scholar 

  15. Grote DL, Park SW, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. Int J Impact Eng 25(9):869

    Article  Google Scholar 

  16. Zhang MH, Shim VPW, Lu G, Chew CW (2005) Resistance of high-strength concrete to projectile impact. Int J Impact Eng 31(7):825–841

    Article  Google Scholar 

  17. Abdel-Kader M, Fouda A (2019) Improving the resistance of concrete panels to hard projectile impact. Int J Prot Struct 10(4):510–538

    Article  Google Scholar 

  18. Li Y, Wu H, Fang Q, Peng Y (2018) A note on the impact resistance of concrete target against rigid projectile. Int J Prot Struct 9(3):397–411

    Article  Google Scholar 

  19. Sielicki PW, Ślosarczyk A, Szulc D (2019) Concrete slab fragmentation after bullet impact: An experimental study. Int J Prot Struct 10(3):380–389

    Article  Google Scholar 

  20. Prochon P, Piotrowski T (2016) Bound water content measurement in cement pastes by stoichiometric and gravimetric analyses. J Build Chem 1(1)

  21. Trabelsi A, Kammoun Z, Beddey A (2017) Seismic retrofitting of a tower with shear wall in UHPC based dune sand. Earthq Struct 12(6):591

    Google Scholar 

  22. Dreux G, Festa J (1998) Nouveau guide du béton et de ses constituants. Eyrolles

  23. Yousfi S, Nouri L, Saidani M, Hadjab H (2014) The use of the dreux-gorisse method in the preparation of concrete mixes: an automatic approach 79–93

  24. En BS (2002) 12390–3, Testing hardened concrete-Part 3: compressive strength of test specimens. British standards institution

  25. En BS (2009) 12390–5, Testing hardened concrete–Part 5: flexural strength of test specimens. In: British standards institution-BSI and CEN European committee for standardization

  26. En BS (2009) 12350–2: 2009. Testing fresh concrete. Slump-test. British standards

  27. AFNOR, N. (1994). P 15–433 Standard. Methods of cement testing-Determination of shrinkage and swelling. French Association for Standardization, Paris.

  28. Sovják R, Vavřiník T, Máca P, Zatloukal J, Konvalinka P, Song Y (2013) Experimental investigation of ultra-high performance fiber reinforced concrete slabs subjected to deformable projectile impact. Procedia Eng 65:120–125

    Article  Google Scholar 

  29. Peng Y, Wu H, Fang Q, Liu JZ, Gong ZM (2016) Impact resistance of basalt aggregated UHP-SFRC/fabric composite panel against small caliber arm. Int J Impact Eng 88:201–213

    Article  Google Scholar 

  30. Alhozaimy A, Jaafar MS, Al-Negheimish A, Abdullah A, Taufiq-Yap YH, Noorzaei J, Alawad OA (2012) Properties of high strength concrete using white and dune sands under normal and autoclaved curing. Constr Build Mater 27(1):218–222

    Article  Google Scholar 

  31. Eyrolles C (2000) Règles BAEL 91 modifiées 99: Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états-limites. Éditions Eyrolles, Paris, p 151

    Google Scholar 

  32. Lim S, Zollinger DG (2003) Estimation of the compressive strength and modulus of elasticity of cement-treated aggregate base materials. Transp Res Rec 1837(1):30–38. https://doi.org/10.3141/1837-04

    Article  Google Scholar 

  33. Rhodes JA, Carreira DJ, Bazant ZP, Beaudoin JI, Branson DE, Gamble BR, Hard MA (1982) Prediction of creep, shrinkage, and temperature effects in concrete structures: Reported by ACI committee 209. In: 1978 Adrian Pauw Symposium on Designing for Creep and Shrinkage at the 1978 ACI Fall Convention. American Concrete Institute pp 193–300

  34. Elwell DJ, Fu G (1995) Compression testing of concrete: cylinders versus cubes (No. FHWA/NY/SR-95/119). Transportation Research and Development Bureau, New York

  35. Code P (2005) Eurocode 2: design of concrete structures-part 1–1: general rules and rules for buildings. Br Stand Inst Lond 668:659–668

    Google Scholar 

  36. Ahmed M, Hadi KME, Hasan MA, Mallick J, Ahmed A (2014) Evaluating the co-relationship between concrete flexural tensile strength and compressive strength. Int J Struct Eng 5(2):115–131

    Article  Google Scholar 

  37. Ahmed M, Mallick J, Hasan MA (2016) A study of factors affecting the flexural tensile strength of concrete. J King Saud Univ Eng Sci 28(2):147–156

    Google Scholar 

  38. Perumal R (2015) Correlation of compressive strength and other engineering properties of high-performance steel fiber–reinforced concrete. J Mater Civ Eng 27(1):04014114

    Article  Google Scholar 

  39. Mahdy M, Speare PRS, Abdel-Reheem AH (2002) Mechanical properties of heavyweight, high strength concrete. In: 2nd Material Specialty Conference of the Canadian Society for Civil Engineering, Montréal, Québec, 5–8 June

  40. Bhanjaa S, Sengupta B (2005) Influence of silica fume on the tensile strength of concrete. J Cem Concr Res 35(4):743–747

    Article  Google Scholar 

  41. Marušić E, Štirmer N (2016) Autogenous shrinkage and expansion related to compressive strength and concrete composition. J Adv Concr Technol 14(9):489–501

    Article  Google Scholar 

  42. Pons G, Torrenti JM (2008) La durabilité des bétons. Chap. 5 167–213

  43. Vossoughi F, Ostertag CP, Monteiro PJ, Johnson GC (2007) Resistance of concrete protected by fabric to projectile impact. Cem Concr Res 37(1):96–106

    Article  CAS  Google Scholar 

  44. Murthy ARC, Palani GS, Iyer NR (2010) Impact analysis of concrete structural components. Def Sci J 60(3):307–319

    Article  Google Scholar 

  45. Haldar A, Hamieh HA, Miller FJ (1983) Penetration and spallation depth estimation for concrete structures

  46. Kosteski LE, Riera JD, Iturrioz I, Singh RK, Kant T (2015) Assessment of empirical formulas for prediction of the effects of projectile impact on concrete structures. Fatigue Fract Eng Mater Struct 38(8):948–959

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zied Kammoun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgolli, M.O., Kammoun, Z., Trabelsi, A. et al. Effect of dune sand on concrete mechanical strength and ballistic resistance. Innov. Infrastruct. Solut. 9, 220 (2024). https://doi.org/10.1007/s41062-024-01531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01531-4

Keywords

Navigation