Skip to main content
Log in

A modeling approach for suitability evaluation of traffic noise prediction under mixed traffic situation in mid-sized Indian cities

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

An efficient traffic noise prediction model is a decision-making tool for creating a peaceful environment. Despite the escalating concerns regarding traffic noise in India, limited research focuses on traffic noise prediction to address the unique road traffic scenarios prevalent in the country. Therefore, in the present study, suitability evaluation of the most extensively used prediction models, Federal Highway Administration (FHWA) and Calculation of Road Traffic Noise (CRTN), is carried out. Subsequently, a robust regression model tailored for accurate traffic noise prediction is formulated. However, to modify and enhance the applicability of the model, a novel reference energy mean emission level equation is developed for each vehicle category predominantly plying on Indian roadways. The FHWA approach yielded mean absolute error (MAE) and root mean square error (RMSE) values of 2.5 and 2.6, respectively. In contrast, the CRTN approach exhibited higher errors with MAE and RMSE values of 3.4 and 3.6, respectively. In addition, assessing all other performance metrics demonstrates the better applicability and efficiency of the modified FHWA model with optimum accuracy. The number of heavy vehicles, average traffic speed, and traffic flow were observed to be the vital factors influencing traffic noise generation. Furthermore, using the proposed model results, a regression model for different time durations that can be extensively used in mid-sized Indian cities is established. This research contributes significantly to the field, providing valuable insights for town planners, highway engineers, and authorities to formulate effective noise mitigation strategies in urban planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data from current study will be available from the corresponding author on reasonable request.

References

  1. Thakre C, Laxmi V, Vijay R et al (2020) Traffic noise prediction model of an Indian road: an increased scenario of vehicles and honking. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-09923-6

    Article  Google Scholar 

  2. Mishra A, Das S, Singh D, Maurya AK (2021) Effect of COVID-19 lockdown on noise pollution levels in an Indian city: a case study of Kanpur. Environ Sci Pollut Res 28:46007–46019. https://doi.org/10.1007/s11356-021-13872-z

    Article  CAS  Google Scholar 

  3. Ky NM, Lap BQ, Hung NTQ et al (2021) Investigation and assessment of road traffic noise: a case study in Ho Chi Minh City, Vietnam. Water Air Soil Pollut. https://doi.org/10.1007/s11270-021-05210-3

    Article  Google Scholar 

  4. Aumond P, Can A, Mallet V et al (2021) Global sensitivity analysis for road traffic noise modelling. Appl Acoust. https://doi.org/10.1016/j.apacoust.2020.107899

    Article  Google Scholar 

  5. Montes González D, Barrigón Morillas JM, Rey-Gozalo G (2023) Effects of noise on pedestrians in urban environments where road traffic is the main source of sound. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.159406

    Article  Google Scholar 

  6. Attal E, Dubus B, Leblois T, Cretin B (2021) An optimal dimensioning method of a green wall structure for noise pollution reduction. Build Environ. https://doi.org/10.1016/j.buildenv.2020.107362

    Article  Google Scholar 

  7. Upadhyay S, Parida M, Kumar B, Kumar P (2023) Development of urban traffic noise model for a mid-sized city: a case study of Kanpur. Mapan J Metrol Soc India. https://doi.org/10.1007/s12647-023-00693-3

    Article  Google Scholar 

  8. Padilla-Ortiz AL, Machuca-Tzili FA, Ibarra-Zarate D (2023) Smartphones, a tool for noise monitoring and noise mapping: an overview. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04240-6

    Article  Google Scholar 

  9. Basner M, McGuire S (2018) WHO environmental noise guidelines for the European region: a systematic review on environmental noise and effects on sleep. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15030519

    Article  Google Scholar 

  10. Yankoty LI, Gamache P, Plante C et al (2021) Long-term residential exposure to environmental/transportation noise and the incidence of myocardial infarction. Int J Hyg Environ Health. https://doi.org/10.1016/j.ijheh.2020.113666

    Article  Google Scholar 

  11. Begou P, Kassomenos P, Kelessis A (2020) Effects of road traffic noise on the prevalence of cardiovascular diseases: the case of Thessaloniki, Greece. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134477

    Article  Google Scholar 

  12. Steele C (2001) Critical review of some traffic noise prediction models. Appl Acoust. https://doi.org/10.1016/S0003-682X(00)00030-X

    Article  Google Scholar 

  13. Amoatey P, Omidvarbona H, Baawain MS et al (2020) Exposure assessment to road traffic noise levels and health effects in an arid urban area. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-09785-y

    Article  Google Scholar 

  14. Lee EY, Jerrett M, Ross Z et al (2014) Assessment of traffic-related noise in three cities in the United States. Environ Res. https://doi.org/10.1016/j.envres.2014.03.005

    Article  Google Scholar 

  15. Okokon EO, Yli-Tuomi T, Turunen AW et al (2018) Traffic noise, noise annoyance and psychotropic medication use. Environ Int. https://doi.org/10.1016/j.envint.2018.06.034

    Article  Google Scholar 

  16. Shukla AK, Jain SS, Parida M, Srivastava JB (2009) Performance of FHWA model for predicting traffic noise: a case study of metropolitan city Lucknow (India). Transport. https://doi.org/10.3846/1648-4142.2009.24.234-240

    Article  Google Scholar 

  17. Abdur-Rouf K, Shaaban K (2022) Development of prediction models of transportation noise for roundabouts and signalized intersections. Transp Res Part D Transp Environ. https://doi.org/10.1016/j.trd.2022.103174

    Article  Google Scholar 

  18. Quiñones-Bolaños EE, Bustillo-Lecompte CF, Mehrvar M (2016) A traffic noise model for road intersections in the city of Cartagena de Indias, Colombia. Transp Res Part D Transp Environ. https://doi.org/10.1016/j.trd.2016.05.007

    Article  Google Scholar 

  19. Hamad K, Ali Khalil M, Shanableh A (2017) Modeling roadway traffic noise in a hot climate using artificial neural networks. Transp Res Part D Transp Environ. https://doi.org/10.1016/j.trd.2017.04.014

    Article  Google Scholar 

  20. Kalaiselvi R, Ramachandraiah A (2016) Honking noise corrections for traffic noise prediction models in heterogeneous traffic conditions like India. Appl Acoust. https://doi.org/10.1016/j.apacoust.2016.04.003

    Article  Google Scholar 

  21. Can A, Aumond P (2018) Estimation of road traffic noise emissions: the influence of speed and acceleration. Transp Res Part D Transp Environ. https://doi.org/10.1016/j.trd.2017.12.002

    Article  Google Scholar 

  22. Chen L, Cong L, Dong Y et al (2021) Investigation of influential factors of tire/pavement noise: a multilevel Bayesian analysis of full-scale track testing data. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121484

    Article  Google Scholar 

  23. Lu X, Kang J, Zhu P et al (2019) Influence of urban road characteristics on traffic noise. Transp Res Part D Transp Environ. https://doi.org/10.1016/j.trd.2019.08.026

    Article  Google Scholar 

  24. To WM, Ip RCW, Lam GCK, Yau CTH (2002) A multiple regression model for urban traffic noise in Hong Kong. J Acoust Soc Am 112:551–556. https://doi.org/10.1121/1.1494803

    Article  CAS  Google Scholar 

  25. Dwivedi A, Kumar N, Singh P et al (2022) Linear regression model for noise pollution over central Delhi to highlight the alarming threat for the environment. Model Earth Syst Environ. https://doi.org/10.1007/s40808-022-01594-1

    Article  Google Scholar 

  26. Khajehvand M, Rassafi AA, Mirbaha B (2021) Modeling traffic noise level near at-grade junctions: roundabouts, T and cross intersections. Transp Res Part D Transp Environ. https://doi.org/10.1016/j.trd.2021.102752

    Article  Google Scholar 

  27. Singh D, Francavilla AB, Mancini S, Guarnaccia C (2021) Application of machine learning to include honking effect in vehicular traffic noise prediction. Appl Sci. https://doi.org/10.3390/app11136030

    Article  Google Scholar 

  28. Umar IK, Gökçekuş H, Nourani V (2022) An intelligent soft computing technique for prediction of vehicular traffic noise. Arab J Geosci. https://doi.org/10.1007/s12517-022-10858-0

    Article  Google Scholar 

  29. Ahmed AA, Pradhan B, Chakraborty S, Alamri A (2021) Developing vehicular traffic noise prediction model through ensemble machine learning algorithms with GIS. Arab J Geosci. https://doi.org/10.1007/s12517-021-08114-y

    Article  Google Scholar 

  30. Mann S, Singh G (2024) Random effect generalized linear model based predictive modelling of traffic noise. Environ Monit Assess. https://doi.org/10.1007/s10661-023-12285-4

    Article  Google Scholar 

  31. Gündoǧdu Ö, Gökdaǧ M, Yüksel F (2005) A traffic noise prediction method based on vehicle composition using genetic algorithms. Appl Acoust. https://doi.org/10.1016/j.apacoust.2004.11.003

    Article  Google Scholar 

  32. Ruiz-Padillo A, Ruiz DP, Torija AJ, Ramos-Ridao Á (2016) Selection of suitable alternatives to reduce the environmental impact of road traffic noise using a fuzzy multi-criteria decision model. Environ Impact Assess Rev 61:8–18. https://doi.org/10.1016/j.eiar.2016.06.003

    Article  Google Scholar 

  33. Li F, Liao SS, Cai M (2016) A new probability statistical model for traffic noise prediction on free flow roads and control flow roads. Transp Res Part D Transp Environ 49:313–322. https://doi.org/10.1016/j.trd.2016.10.019

    Article  Google Scholar 

  34. Tiwari SK, Kumaraswamidhas LA, Gautam C, Garg N (2022) An auto-encoder based LSTM model for prediction of ambient noise levels. Appl Acoust 195:108849. https://doi.org/10.1016/j.apacoust.2022.108849

    Article  Google Scholar 

  35. Renaud J, Karam R, Salomon M, Couturier R (2023) Deep learning and gradient boosting for urban environmental noise monitoring in smart cities. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2023.119568

    Article  Google Scholar 

  36. Road Transport Year Book RT (2019) Road Transport Year Book. Dhanbad

  37. Zhong M, Bagheri E, Christie J (2012) Improving group assignment and AADT estimation accuracy of short-term traffic counts using historical seasonal patterns & Bayesian statistics. Procedia Soc Behav Sci. https://doi.org/10.1016/j.sbspro.2012.04.134

    Article  Google Scholar 

  38. Pandey G, Dubey S, Tripathi S (2011) Traffic noise assessment at National Highway 28 in India using FHWA model. Int J Veh Noise Vib 7:37–50. https://doi.org/10.1504/IJVNV.2011.039053

    Article  Google Scholar 

  39. Mishra RK, Parida M, Rangnekar S (2010) Evaluation and analysis of traffic noise along bus rapid transit system corridor. Int J Environ Sci Technol 7:737–750. https://doi.org/10.1007/BF03326183

    Article  Google Scholar 

  40. Soni AR, Makde K, Amrit K et al (2022) Noise prediction and environmental noise capacity for urban traffic of Mumbai. Appl Acoust 188:108516. https://doi.org/10.1016/j.apacoust.2021.108516

    Article  Google Scholar 

  41. Agarwal S, Swami BL (2011) Comprehensive approach for the development of traffic noise prediction model for Jaipur city. Environ Monit Assess. https://doi.org/10.1007/s10661-010-1320-z

    Article  Google Scholar 

  42. Campello-Vicente H, Peral-Orts R, Campillo-Davo N, Velasco-Sanchez E (2017) The effect of electric vehicles on urban noise maps. Appl Acoust. https://doi.org/10.1016/j.apacoust.2016.09.018

    Article  Google Scholar 

  43. Tsoi KH, Loo BPY, Li X, Zhang K (2023) The co-benefits of electric mobility in reducing traffic noise and chemical air pollution: insights from a transit-oriented city. Environ Int. https://doi.org/10.1016/j.envint.2023.108116

    Article  Google Scholar 

  44. Onuu MU (2000) Road traffic noise in Nigeria: measurements, analysis and evaluation of nuisance. J Sound Vib. https://doi.org/10.1006/jsvi.1999.2832

    Article  Google Scholar 

  45. Baaj MH, El-Fadel M, Shazbak SM, Saliby E (2001) Modeling noise at elevated highways in urban areas: a practical application. J Urban Plan Dev. https://doi.org/10.1061/(asce)0733-9488(2001)127:4(169)

    Article  Google Scholar 

  46. Pamanikabud P, Vivitjinda P (2002) Noise prediction for highways in Thailand. Transp Res Part D Transp Environ. https://doi.org/10.1016/S1361-9209(02)00012-3

    Article  Google Scholar 

  47. Cho DS, Mun S (2008) Development of a highway traffic noise prediction model that considers various road surface types. Appl Acoust. https://doi.org/10.1016/j.apacoust.2007.06.004

    Article  Google Scholar 

  48. Rajakumara HN, Mahalinge Gowda RM (2009) Road traffic noise prediction model under interrupted traffic flow condition. Environ Model Assess. https://doi.org/10.1007/s10666-008-9138-6

    Article  Google Scholar 

  49. Chang TY, Lin HC, Yang WT et al (2012) A modified Nordic prediction model of road traffic noise in a Taiwanese city with significant motorcycle traffic. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2012.06.016

    Article  Google Scholar 

  50. Sheng N, Xu Z, Li M (2015) The performance of CRTN model in a Motorcycle city. Math Probl Eng. https://doi.org/10.1155/2015/369620

    Article  Google Scholar 

  51. Murillo-Gómez DM, Gil-Carvajal JC, Zapata-Rodríguez V, Téllez-García JJ (2015) Assessment of the RLS 90 calculation method for predicting road traffic noise in Colombian conditions. Rev Fac Ing. https://doi.org/10.17533/udea.redin.n75a17

    Article  Google Scholar 

  52. Debnath A, Singh PK (2018) Environmental traffic noise modelling of Dhanbad township area: a mathematical based approach. Appl Acoust. https://doi.org/10.1016/j.apacoust.2017.07.023

    Article  Google Scholar 

  53. Chen L, Liu T, Tang B et al (2021) Modelling traffic noise in a wide gradient interval using artificial neural networks. Environ Technol. https://doi.org/10.1080/09593330.2020.1734098

    Article  Google Scholar 

  54. Khan J, Ketzel M, Jensen SS et al (2021) Comparison of road traffic noise prediction models: CNOSSOS-EU, Nord 2000 and TRANEX. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.116240

    Article  Google Scholar 

  55. Ibili F, Owolabi AO, Ackaah W, Massaquoi AB (2022) Statistical modelling for urban roads traffic noise levels. Sci Afr. https://doi.org/10.1016/j.sciaf.2022.e01131

    Article  Google Scholar 

  56. Dhanbad District Survey Report DS (2018) District Survey Report

  57. Agarwal S, Swami BL, Gupta AB (2009) Development of a noise prediction model under interrupted traffic flow conditions: a case study for Jaipur city. Noise Heal. https://doi.org/10.4103/1463-1741.56211

    Article  Google Scholar 

  58. Barry TM, Regan JA (1979) FHWA highway traffic noise prediction model United States. Office of Research and Development

  59. Patel R, Kumar Singh P, Saw S (2022) Recent advancements in the challenges and strategies of globally used traffic noise prediction models. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-20693-1

    Article  Google Scholar 

  60. Tansatcha M, Pamanikabud P, Brown AL, Affum JK (2005) Motorway noise modelling based on perpendicular propagation analysis of traffic noise. Appl Acoust. https://doi.org/10.1016/j.apacoust.2005.02.002

    Article  Google Scholar 

  61. Li MW, Xu DY, Geng J, Hong WC (2022) A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2021.108084

    Article  Google Scholar 

  62. Rabehi A, Guermoui M, Lalmi D (2020) Hybrid models for global solar radiation prediction: a case study. Int J Ambient Energy. https://doi.org/10.1080/01430750.2018.1443498

    Article  Google Scholar 

  63. Willmott CJ (1981) On the validation of models. Phys Geogr. https://doi.org/10.1080/02723646.1981.10642213

    Article  Google Scholar 

  64. Ministry of Environment and forest (2000) The Noise Pollution (Regulation and Control) Rules, 2000. 12311:1088–1569

  65. Mishra RK, Nair K, Kumar K, Shukla A (2021) Dynamic noise mapping of road traffic in an urban city. Arab J Geosci. https://doi.org/10.1007/s12517-020-06373-9

    Article  Google Scholar 

  66. Guarnaccia C, Bandeira J, Coelho MC et al (2018) Statistical and semi-dynamical road traffic noise models comparison with field measurements. In: AIP conference proceedings

  67. Pascale A, Fernandes P, Guarnaccia C, Coelho MC (2021) A study on vehicle noise emission modelling: correlation with air pollutant emissions, impact of kinematic variables and critical hotspots. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.147647

    Article  Google Scholar 

Download references

Acknowledgements

The authors are immensely thankful to the Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, for providing the required instrument and research facilities to carry out the present work.

Funding

No funding was received for conducting the present study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RP; Methodology, Data collection, and Formal analysis: RP; Writing—original draft preparation: RP; Supervision: PKS; Review and Editing: SS, PKS.

Corresponding author

Correspondence to Prasoon Kumar Singh.

Ethics declarations

Conflict of interest

The authors have no related financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Appendix

Appendix

Sample calculation of hourly equivalent noise level (Leq) with hypothetical sampling location and traffic data.

Sampling Station: say XYZ

Time duration: say 6.00 PM–7.00 PM.

The linear regression model developed for the evening time period is as follows:

$${{\text{L}}}_{{\text{predicted}}}=12.177 \times {\mathrm{Log}}_{10}\sum {10}^{\frac{{\text{Leqi}}}{10}}-11.375$$

Sampling distance (D): 7.5 m

Reference distance (D0): 10 m

Volume and speed correction = AVS = 10 × Log10(D0 × V/S) – 25

Distance correction = AD = 10 × Log10 (D0/D)1+α

Ground cover correction = As = 0 (for hard surface)

Equivalent noise level of ith vehicle Leqi = L0 + AVS + AD + AS

Firstly, calculating Leqi for all the vehicle categories on the basis of assumed Traffic Volume (V) and Average Speed (S).

Car or Jeep:

Traffic Volume (V) of Car or Jeep = say 334

Average Speed of Car or Jeep (S) = say 38 km/h

$$\begin{aligned} {{\text{L}}_0} & = \, 29.586 \, \times {\text{ Log}}_{10}\left( {\text{S}} \right) \, + \, 21.689 \\ & = \, 29.586 \, \times {\text{ Log}}_{10}\left( {38} \right) \, + \, 21.689 \\ & = \, 68.42 \\ \;\;\;\;{{\text{A}}_{{\text{VS}}}} & = \, 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right)-- \, 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, x \, 334/38} \right) \, -- \, 25 \\ & = \, - 5.56 \\ \;\;\;\;\;{{\text{A}}_{\text{D}}} & = \, 10 \, \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ \;\;\;\;\;\;\;\;\;\;\; & = \, 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ & = \, 1.24 \\ \;\;\;\;\;\;{\text{As }} & = \, 0 \\ \end{aligned}$$

Equivalent noise level for Car or Jeep:

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = {{\text{L}}_0} + {{\text{A}}_{{\text{VS}}}} + {{\text{A}}_{\text{D}}} + {{\text{A}}_{\text{S}}} \\ & = \, 68.42 \, + \, \left( { - 5.56} \right) \, + \, 1.24 + \, 0 \\ & = \, 64.1 \\ \end{aligned}$$

Scooter or Bike (Petrol Driven):

Traffic Volume (V) of Scooter or Bike (Petrol Driven) = say 1021

Average Speed of Scooter or Bike (Petrol Driven) (S) = say 40 km/h

$$\begin{aligned} {{\text{L}}_0} & = \, 31.298 \, \times {\text{ Log}}_{10}\left( {\text{S}} \right) \, + \, 16.819 \\ & = \, 31.298 \times {\text{ Log}}_{10}\left( {40} \right) \, + \, 16.819 \\ & = \, 66.96 \\ {{\text{A}}_{{\text{VS}}}} & = \, 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right) - 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, x \, 1021/40} \right) - 25 \\ & = \, - 0.93 \\ {{\text{A}}_{\text{D}}} & = \, 10 \, \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ & = \, 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ & = \, 1.24 \\ {\text{As }} & = \, 0 \\ \end{aligned}$$

Hence, equivalent noise level for Scooter or Bike (Petrol Driven):

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = \, {{\text{L}}_0} + \, {{\text{A}}_{{\text{VS}}}} + \, {{\text{A}}_{\text{D}}} + \, {{\text{A}}_{\text{S}}} \\ & = \, 66.96 + \, \left( { - 0.93} \right) \, + \, 1.24 + \, 0 \\ & = \, 67.2 \\ \end{aligned}$$

LCV (Light Commercial Vehicle):

Traffic Volume (V) of LCV (Light Commercial Vehicle) = say 57

Average Speed of LCV (Light Commercial Vehicle) (S) = say 25 km/h

$$\begin{aligned} {{\text{L}}_0} & = \, 36.354 \, \times {\text{ Log}}_{10}\left( {\text{S}} \right) \, + \, 20.490 \\ & = \, 36.354 \, \times {\text{ Log}}_{10}\left( {25} \right) \, + \, 20.490 \\ & = \, 71.31 \\ {{\text{A}}_{{\text{VS}}}} & = \, 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right) - 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, \times \, 57/25} \right) - 25 \\ & = \, - 11.42 \\ {{\text{A}}_{\text{D}}} & = \, 10 \, \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ & = \, 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ & = \, 1.24 \\ {\text{As}} & \, = \, 0 \\ \end{aligned}$$

Hence, equivalent noise level for LCV (Light Commercial Vehicle):

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = {{\text{L}}_0} + {{\text{A}}_{{\text{VS}}}} + \, {{\text{A}}_{\text{D}}} + \, {{\text{A}}_{\text{S}}} \\ & = \, 71.31 \, + \, \left( { - 11.42} \right) \, + \, 1.24 \, + \, 0 \\ & = \, 61.1 \\ \end{aligned}$$

Bus:

Traffic Volume (V) of Bus = say 70

Average Speed of Bus (S) = say 22 km/h

$$\begin{aligned} {{\text{L}}_0} & = \, 37.623 \, \times {\text{ Log}}_{10}\left( {\text{S}} \right) \, + \, 19.479 \\ & = \, 37.623 \, \times {\text{ Log}}_{10}\left( {22} \right) \, + \, 19.479 \\ & = \, 69.98 \\ {{\text{A}}_{{\text{VS}}}} & = \, 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right) - 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, \times \, 70/22} \right) - 25 \\ & = \, - 9.97 \\ {{\text{A}}_{\text{D}}} & = \, 10 \, \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ & = \, 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ & = \, 1.24 \\ {\text{As}} & \, = \, 0 \\ \end{aligned}$$

Hence, equivalent noise level for Bus:

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = \, {{\text{L}}_0} + \, {{\text{A}}_{{\text{VS}}}} + \, {{\text{A}}_{\text{D}}} + \, {{\text{A}}_{\text{S}}} \\ & = \, 69.98 \, + \, \left( { - 9.97} \right) \, + \, 1.24 + \, 0 \\ & = \, 61.2 \\ \end{aligned}$$

Truck:

Traffic Volume (V) of Truck = say 121

Average Speed of Truck (S) = say 22 km/h

$$\begin{aligned} {{\text{L}}_0} & = \, 39.591 \, \times {\text{ Log}}_{10}\left( {\text{S}} \right) \, + \, 18.132 \\ & = \, 39.591 \, \times {\text{ Log}}_{10}\left( {22} \right) \, + \, 18.132 \\ & = \, 71.27 \\ {{\text{A}}_{{\text{VS}}}} & = \, 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right) \, -- \, 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, \times \, 121/22} \right) \, -- \, 25 \\ & = \, - 7.59 \\ {{\text{A}}_{\text{D}}} & = \, 10 \, \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ & = \, 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ & = \, 1.24 \\ {\text{As}} & \, = \, 0 \\ \end{aligned}$$

Hence, equivalent noise level for Truck:

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = \, {{\text{L}}_0} + \, {{\text{A}}_{{\text{VS}}}} + \, {{\text{A}}_{\text{D}}} + \, {{\text{A}}_{\text{S}}} \\ & = \, 71.27 \, + \, \left( { - 7.59} \right) \, + \, 1.24 \, + \, 0 \\ & = \, 64.9 \\ \end{aligned}$$

3Wheeler or Auto Rickshaw (Diesel Driven):

Traffic Volume (V) of 3Wheeler or Auto Rickshaw (Diesel Driven) = say 389

Average Speed of 3Wheeler or Auto Rickshaw (Diesel Driven) (S) = say 28 km/h

$$\begin{aligned} {{\text{L}}_0} & = \, 3.234 \, \times {\text{ Log}}_{10}\left( {\text{S}} \right) \, + \, 61.510 \\ & = \, 3.234 \, \times {\text{ Log}}_{10}\left( {28} \right) \, + \, 61.510 \\ & = \, 66.19 \\ {{\text{A}}_{{\text{VS}}}} & = \, 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right) \, -- \, 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, \times \, 389/28} \right) \, -- \, 25 \\ & = \, - 3.57 \\ {{\text{A}}_{\text{D}}} & = \, 10 \, \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ & = \, 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ & = \, 1.24 \\ {\text{As}} & \, = \, 0 \\ \end{aligned}$$

Hence, equivalent noise level for 3Wheeler or Auto Rickshaw (Diesel Driven):

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = {{\text{L}}_0} + \, {{\text{A}}_{{\text{VS}}}} + \, {{\text{A}}_{\text{D}}} + \, {{\text{A}}_{\text{S}}} \\ & = \, 66.19 \, + \, \left( { - 3.57} \right) \, + \, 1.24 \, + \, 0 \\ & \; = \, 63.8 \\ \end{aligned}$$

Tractor or Trailor:

Traffic Volume (V) of Tractor or Trailor = say 26

Average Speed of Tractor or Trailor (S) = say 20 km/h

$$\begin{aligned} {{\text{L}}_0} & = 12.285 \, \times {\text{ Log}}_{10}\left( {\text{S}} \right) \, + \, 63.152 \\ & = 12.285 \, \times {\text{ Log}}_{10}\left( {20} \right) \, + \, 63.152 \\ & = \, 79.13 \\ \;{{\text{A}}_{{\text{VS}}}} & = \, 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right) - 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, \times \, 26/20} \right) - 25 \\ & = \, - 13.86 \\ {{\text{A}}_{\text{D}}} & = \, 10 \, \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ & = \, 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ & = \, 1.24 \\ {\text{As}} & \, = \, 0 \\ \end{aligned}$$

Hence, equivalent noise level for Tractor or Trailor:

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = {{\text{L}}_0} + {{\text{A}}_{{\text{VS}}}} + {{\text{A}}_{\text{D}}} + {{\text{A}}_{\text{S}}} \\ & = \, 79.13 \, + \, \left( { - 13.86} \right) \, + \, 1.24 \, + \, 0 \\ & = \, 66.5 \\ \end{aligned}$$

E-Rickshaw:

Traffic Volume (V) of E-Rickshaw = say 90

Average Speed of E-Rickshaw (S) = say 15 km/h

$$\begin{aligned} {{\text{L}}_0} & = \, 19.7311 \, \times {\text{ Log}}_{10}\left( {\text{S}} \right) \, + \, 42.918 \\ & = \, 19.7311 \, \times {\text{ Log}}_{10}\left( {15} \right) \, + \, 42.918 \\ & = \, 66.12 \\ {{\text{A}}_{{\text{VS}}}} & = \, 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right) - 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, \times \, 90/15} \right) - 25 \\ & = \, - 7.21 \\ {{\text{A}}_{\text{D}}} & = \, 10 \, \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ & = \, 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ & = \, 1.24 \\ {\text{As}} & \, = \, 0 \\ \end{aligned}$$

Hence, equivalent noise level for E-Rickshaw:

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = \, {{\text{L}}_0} + \, {{\text{A}}_{{\text{VS}}}} + \, {{\text{A}}_{\text{D}}} + \, {{\text{A}}_{\text{S}}} \\ & = \, 66.12 \, + \, \left( { - 7.21} \right) \, + \, 1.24 \, + \, 0 \\ & = \, 60.1 \\ \end{aligned}$$

E-Bike:

Traffic Volume (V) of E-Bike = say 21

Average Speed of E-Bike (S) = say 25 km/h

$$\begin{aligned} {{\text{L}}_0} & = 21.1210 \times {\text{Log}}_{10}\left( {\text{S}} \right) + 32.598 \\ & = 21.1210 \times {\text{Lo}}{{\text{g}}_{10}}\left( {25} \right) + 32.598 \\ & = 62.12 \\ {{\text{A}}_{{\text{VS}}}} & = 10 \, \times {\text{ Log}}_{10}\left( {{{\text{D}}_0} \times {\text{ V/S}}} \right) - 25 \\ & = 10 \, \times {\text{ Log}}_{10}\left( {10 \, \times \, 21/25} \right) - 25 \\ & = - 15.75 \\ {{\text{A}}_{\text{D}}} & = 10 \times {\text{ Log}}_{10}{\left( {{{\text{D}}_0}/{\text{D}}} \right)^{1 + \alpha }} \\ & = 10 \, \times {\text{ Log}}_{10}{\left( {10/7.5} \right)^{1 + 0}} \\ \; & = \, 1.24 \\ {\text{As }} & = \, 0 \\ \end{aligned}$$

Hence, equivalent noise level for E-Bike:

$$\begin{aligned} {{\text{L}}_{{\text{eqi}}}} & = {{\text{L}}_0} + {{\text{A}}_{{\text{VS}}}} + {{\text{A}}_{\text{D}}} + {{\text{A}}_{\text{S}}} \\ & = \, 62.12 \, + \, \left( { - 15.75} \right) \, + \, 1.24 \, + \, 0 \\ & = \, 47.6 \\ \end{aligned}$$

Hence, the predicted noise level for evening time will be calculated using following equation.

$${{\text{L}}}_{{\text{predicted}}}=12.177 \times {\mathrm{Log}}_{10}\sum {10}^{\frac{{\text{Leqi}}}{10}}-11.375$$
$$=12.177 \times {\mathrm{Log}}_{10}\sum {10}^{\frac{64.1}{10}}{+10}^{\frac{67.2}{10}}{+10}^{\frac{61.1}{10}}{+10}^{\frac{61.2}{10}}{+10}^{\frac{64.9}{10}}{+10}^{\frac{63.8}{10}}{+10}^{\frac{66.5}{10}}{+10}^{\frac{60.1}{10}}{+10}^{\frac{47.6}{10}}-11.375$$

 = 77.9 dBA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Singh, P.K. & Saw, S. A modeling approach for suitability evaluation of traffic noise prediction under mixed traffic situation in mid-sized Indian cities. Innov. Infrastruct. Solut. 9, 183 (2024). https://doi.org/10.1007/s41062-024-01493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01493-7

Keywords

Navigation