Skip to main content
Log in

Toward sustainable roads: a critical review on nano-TiO2 application in asphalt pavement

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Among nanomaterials, nano-TiO2 has shown the potential to improve the rheological properties of asphalt binders, and mechanical and durability properties when used in the mixture phase. These improvements include fatigue resistance, high-temperature performance, aging resistance, and moisture susceptibility. In addition, nano-TiO2 is known to have remarkable photocatalytic properties, which can lead to pollutant degradation and better air quality. Besides, nano-TiO2 has the potential to reduce the pavement surface temperature by reflecting the UV rays of the sun and increasing heat dissipation, which may lessen the urban heat island adverse effects on the environment. These interesting features of nano-TiO2 can be attributed to its remarkable physical and chemical structure and properties. To cast light on these different outcomes of using nano-TiO2 in asphalt pavements, this article provides a critical review of the rheological, mechanical, durability, and environmental impacts of incorporating nano-TiO2 into asphalt pavements, and how the chemical properties of nano-TiO2 are related to these effects. This article also reviews the photocatalytic and pavement cooling performance of nano-TiO2-modified asphalt pavement to optimize its environmental benefits. Furthermore, the article provides a critical discussion investigating the challenges and potential downsides of using nano-TiO2 in asphalt pavement, offering helpful discernments for future research and application in the pavement industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All information is sourced from previously published works and is available in the cited references.

References

  1. Schweikert A, Chinowsky P, Espinet X, Tarbert M (2014) Climate change and infrastructure impacts: comparing the impact on roads in ten countries through 2100. Procedia Eng 78:306–316. https://doi.org/10.1016/j.proeng.2014.07.072

    Article  Google Scholar 

  2. Anderson C (2018) Climate Change and Infrastructure. Houst J Health Law Policy 1–57

  3. Poole CP, Owens FJ (2003) Introduction to Nanotechnology

  4. Yang J, Tighe S (2013) A review of advances of nanotechnology in asphalt mixtures. Procedia - Soc Behav Sci 96:1269–1276. https://doi.org/10.1016/j.sbspro.2013.08.144

    Article  Google Scholar 

  5. Tanzadeh J, Vahedi F, Kheiry P, Tanzadeh R (2013) Laboratory study on the effect of nano Tio2 on rutting performance of asphalt pavements. Adv Mater Res 623:990–994. https://doi.org/10.4028/www.scientific.net/AMR.622-623.990

    Article  CAS  Google Scholar 

  6. Ma Y, Li L, Wang H et al (2021) Laboratory study on performance evaluation and automobile exhaust degradation of nano-tio2 particles-modified asphalt materials. Adv Mater Sci Eng. https://doi.org/10.1155/2021/5574013

    Article  Google Scholar 

  7. Li H, Huang W, Qian Y, Klemeš JJ (2023) Air pollution risk assessment related to fossil fuel-driven vehicles in megacities in China by employing the Bayesian network coupled with the Fault Tree method. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.135458

    Article  Google Scholar 

  8. Bai X, Chen H, Oliver BG (2022) The health effects of traffic-related air pollution: a review focused the health effects of going green. Chemosphere 289:133082. https://doi.org/10.1016/j.chemosphere.2021.133082

    Article  CAS  Google Scholar 

  9. Kwon S, Fan M, Cooper AT, Yang H (2008) Photocatalytic applications of micro- and nano-TiO2 in environmental engineering. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643380701628933

    Article  Google Scholar 

  10. Qian G, Yu H, Gong X, Zhao L (2019) Impact of Nano-TiO2 on the NO2 degradation and rheological performance of asphalt pavement. Constr Build Mater 218:53–63. https://doi.org/10.1016/j.conbuildmat.2019.05.075

    Article  CAS  Google Scholar 

  11. Zhong Y (2021) Research on thermal reflection and cooling curing coating material of nano modified emulsified asphalt for urban road pavement. E3S Web Conf 261:1–4. https://doi.org/10.1051/e3sconf/202126102051

    Article  CAS  Google Scholar 

  12. Wang Z, Xie Y, Mu M et al (2022) Materials to mitigate the urban heat island effect for cool pavement: a brief review. Buildings. https://doi.org/10.3390/buildings12081221

    Article  Google Scholar 

  13. Abdullah ME, Zamhari KA, Buhari R et al (2015) A review on the exploration of nanomaterials application in pavement engineering. J Teknol 73:69–76. https://doi.org/10.11113/jt.v73.4291

    Article  Google Scholar 

  14. Ramadhansyah PJ, Masri KA, Norhidayah AH et al (2020) Nanoparticle in asphalt binder: a state-of-the-art review. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/712/1/012023

    Article  Google Scholar 

  15. Debbarma K, Debnath B, Sarkar PP (2022) A comprehensive review on the usage of nanomaterials in asphalt mixes. Constr Build Mater 361:129634. https://doi.org/10.1016/j.conbuildmat.2022.129634

    Article  CAS  Google Scholar 

  16. Li L, Yang L, Lin Y, Zhang X (2021) A compressive review on high- and low-temperature performance of asphalt modified with nanomodifier. Adv Mater Sci Eng. https://doi.org/10.1155/2021/5525459

    Article  Google Scholar 

  17. Li X, Wang F, You L et al (2023) A review on photocatalytic asphalt pavement designed for degradation of vehicle exhausts. Transp Res Part D 115:103605. https://doi.org/10.1016/j.trd.2023.103605

    Article  Google Scholar 

  18. Jameel N, Imad H (2019) ScienceDirect Review on: titanium dioxide applications review on : titanium dioxide b Applications, heat Assessing the feasibility of using the a long-term district. Energy Procedia 157:17–29. https://doi.org/10.1016/j.egypro.2018.11.159

    Article  CAS  Google Scholar 

  19. Khomskii D (2014) Transition metal compounds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Brittain HG, Barbera G, DeVincentis J, Newman AW (1992) Titanium dioxide. Analytical profiles of drug substances and excipients. Elsevier, Amsterdam, pp 659–691

    Chapter  Google Scholar 

  21. Sungur Ş (2021) Titanium dioxide nanoparticles. Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Berlin, pp 713–730

    Chapter  Google Scholar 

  22. He D, Su H, Li X et al (2018) Heterostructure TiO2 polymorphs design and structure adjustment for photocatalysis. Sci Bull 63:314–321. https://doi.org/10.1016/j.scib.2018.02.008

    Article  CAS  Google Scholar 

  23. Gupta SM, Tripathi M (2012) A review on the synthesis of TiO2 nanoparticles by solution route. Cent Eur J Chem 10:279–294. https://doi.org/10.2478/s11532-011-0155-y

    Article  CAS  Google Scholar 

  24. Oi LE, Yee CM, Ong HC (2016) Recent advances of titanium dioxide (TiO2) for green synthesis. RSC Adv. https://doi.org/10.1039/C6RA22894A

    Article  Google Scholar 

  25. Scarpelli F, Mastropieto TF, Poerio T, Godbert N (2018) Mesoporous TiO mesoporous TiO2 thin thin films: state of of the the art. In: Titanium dioxide - Material for a sustainable environment

  26. Mohammadi MM, Modarres A (2022) Microstructural properties of polymer-modified bitumen emulsion-cement composites considering the production method. J Mater Civil Eng 34(1):20. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004170

    Article  Google Scholar 

  27. Challagulla S, Tarafder K, Ganesan R, Roy S (2017) Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-08599-2

    Article  CAS  Google Scholar 

  28. Chen X, Mao SS (2007) Titanium dioxide nanomaterials : synthesis, properties, modifications, and applications. Chem Rev. https://doi.org/10.1021/cr0500535

    Article  Google Scholar 

  29. Xue Y, Wang X, Cui Z (2011) The effects of particle size on the kinetic parameters in the reaction of nano-NiO with sodium bisulfate solution. Prog React Kinet Mech 36:329–341. https://doi.org/10.3184/146867811X13103063934186

    Article  CAS  Google Scholar 

  30. Zaki MG, Elbeih A (2021) Review of nano-thermites; a pathway to enhanced energetic materials. Cent Eur J Energy Mater. https://doi.org/10.22211/cejem/134953

    Article  Google Scholar 

  31. Chaturabong P, Bahia HU (2016) Effect of moisture on the cohesion of asphalt mastics and bonding with surface of aggregates. Road Mater Pavem Desig. https://doi.org/10.1080/14680629.2016.1267659

    Article  Google Scholar 

  32. Yu H, Zhu X, Qian G et al (2020) Evaluation of phosphorus slag (PS) content and particle size on the performance modification effect of asphalt. Constr Build Mater 256:119334. https://doi.org/10.1016/j.conbuildmat.2020.119334

    Article  CAS  Google Scholar 

  33. Masciangioli T, Alper J (2012) Challenges in characterizing small particles: exploring particles from the nano- to microscale: a workshop summary

  34. Dell N, Cadorin A, Victor J et al (2021) Asphalt nanocomposite with titanium dioxide: mechanical, rheological and photoactivity performance. Constr Build Mater 289:18–25. https://doi.org/10.1016/j.conbuildmat.2021.123178

    Article  CAS  Google Scholar 

  35. Wang H, Jin K, Dong X et al (2018) Preparation technique and properties of nano-TiO2 photocatalytic coatings for asphalt pavement. Appl Sci 8:2049. https://doi.org/10.3390/app8112049

    Article  CAS  Google Scholar 

  36. Li M, Zeng F, Xu R et al (2019) Study on compatibility and rheological properties of high-viscosity modified asphalt prepared from low-grade asphalt. Materials (Basel). https://doi.org/10.3390/ma12223776

    Article  Google Scholar 

  37. Dylla H, Iii SC (2013) Sustainable photocatalytic asphalt pavements for mitigation of nitrogen oxide and sulfur dioxide vehicle emissions. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000613

    Article  Google Scholar 

  38. Fan W, Chan KY, Zhang C, Leung MKH (2017) Advanced solar photocatalytic asphalt for removal of vehicular NOx. Energy Procedia 143:811–816. https://doi.org/10.1016/j.egypro.2017.12.767

    Article  CAS  Google Scholar 

  39. Lee JW, Baek C (2021) Evaluation of nox reduction effect and impact on asphalt pavement of surface treatment technology including TiO2 and asphalt rejuvenator. Appl Sci. https://doi.org/10.3390/app112311571

    Article  Google Scholar 

  40. Bocci E, Riderelli L, Fava G, Bocci M (2016) Durability of NO oxidation effectiveness of pavement surfaces treated with photocatalytic titanium dioxide. Arab J Sci Eng 41:4827–4833. https://doi.org/10.1007/s13369-016-2168-5

    Article  CAS  Google Scholar 

  41. Hassan MM, Dylla H, Asadi S et al (2012) Laboratory evaluation of environmental performance of photocatalytic titanium dioxide warm-mix asphalt pavements. J Mater Civ Eng 24:599. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000408

    Article  CAS  Google Scholar 

  42. Leng Z, Yu H (2016) Novel method of coating titanium dioxide on to asphalt mixture based on the breath figure process for air-purifying purpose. J Mater Civ Eng 28:4015188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001478

    Article  Google Scholar 

  43. Qian G, Zhu X, Yu H et al (2022) The oil pollution and nitric oxide photocatalytic degradation evaluation of composite nanomaterials for asphalt pavement. Constr Build Mater 314:125497. https://doi.org/10.1016/j.conbuildmat.2021.125497

    Article  CAS  Google Scholar 

  44. Yu H, Dai W, Qian G et al (2020) The NOx degradation performance of nano-TiO2 coating for asphalt pavement. Nanomaterials. https://doi.org/10.3390/nano10050897

    Article  Google Scholar 

  45. Hofko B, Porot L, Falchetto Cannone A et al (2018) FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Mater Struct Constr. https://doi.org/10.1617/s11527-018-1170-7

    Article  Google Scholar 

  46. Hou X, Lv S, Chen Z, Xiao F (2018) Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Meas J Int Meas Confed 121:304–316. https://doi.org/10.1016/j.measurement.2018.03.001

    Article  Google Scholar 

  47. Weigel S, Stephan D (2017) The prediction of bitumen properties based on FTIR and multivariate analysis methods. Fuel 208:655–661. https://doi.org/10.1016/j.fuel.2017.07.048

    Article  CAS  Google Scholar 

  48. Yang X, You Z, Mills-Beale J (2015) Asphalt binders blended with a high percentage of biobinders: aging mechanism using FTIR and rheology. J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0001117

    Article  Google Scholar 

  49. Chantrain A, Omranian SR, Hashaminejad N, Vuye C (2021) Evaluating the effects of TiO2 as a photocatalytic material in pavement engineering in terms of pollutant degradation and bitumen performance. University of Antwerp

  50. Segundo IR, Landi S, Margaritis A et al (2020) Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO2. Nanomaterials 10:1–19. https://doi.org/10.3390/nano10112152

    Article  CAS  Google Scholar 

  51. Ghamartale A, Afzali S, Rezaei N, Zendehboudi S (2021) Asphaltene and asphaltene precipitation/deposition. Asph Depos Control by Chem Inhib. https://doi.org/10.1016/b978-0-323-90510-7.00006-9

    Article  Google Scholar 

  52. Mirwald J, Werkovits S, Camargo I et al (2020) Investigating bitumen long-term-ageing in the laboratory by spectroscopic analysis of the SARA fractions. Constr Build Mater 258:119577. https://doi.org/10.1016/j.conbuildmat.2020.119577

    Article  CAS  Google Scholar 

  53. Firoozifar SH, Foroutan S, Foroutan S (2011) The effect of asphaltene on thermal properties of bitumen. Chem Eng Res Des 89:2044–2048. https://doi.org/10.1016/j.cherd.2011.01.025

    Article  CAS  Google Scholar 

  54. Filho PGTM, dos Rodrigues SAT, de Lucena LC FL, de Sousa Neto VF (2019) Rheological evaluation of asphalt binder 50/70 incorporated with titanium dioxide nanoparticles. J Mater Civ Eng 31(1):9. https://doi.org/10.1061/(asce)mt.1943-5533.0002885

    Article  CAS  Google Scholar 

  55. Sudarsanan N, Kim YR (2022) A critical review of the fatigue life prediction of asphalt mixtures and pavements. J Traffic Transp Eng English Ed 9:808–835. https://doi.org/10.1016/j.jtte.2022.05.003r

    Article  Google Scholar 

  56. Azarhoosh A, Nejad FM, Khodaii A (2016) Evaluation of the effect of nano-TiO2 on the adhesion between aggregate and asphalt binder in hot mix asphalt. Eur J Environ Civil Eng. https://doi.org/10.1080/19648189.2016.1229227

    Article  Google Scholar 

  57. Chen Z, Pei J, Li R, Xiao F (2018) Performance characteristics of asphalt materials based on molecular dynamics simulation—a review. Constr Build Mater 189:695–710. https://doi.org/10.1016/j.conbuildmat.2018.09.038

    Article  Google Scholar 

  58. Amini N, Hayati P, Latifi H (2022) Evaluation of rutting and fatigue behavior of modified asphalt binders with nanocomposite phase change materials. Int J Pavement Res Technol. https://doi.org/10.1007/s42947-022-00156-z

    Article  Google Scholar 

  59. Zhang L, Gao X, Wang W et al (2021) Laboratory evaluation of rheological properties of asphalt binder modified by nano-TiO2/CaCO3. Adv Mater Sci Eng. https://doi.org/10.1155/2021/5522025

    Article  Google Scholar 

  60. Shafabakhsh GH, Ani OJ (2015) Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Constr Build Mater 98:692–702. https://doi.org/10.1016/j.conbuildmat.2015.08.083

    Article  Google Scholar 

  61. Dell’Antonio Cadorin N, Staub V, de Melo J, Borba Broering W et al (2021) Asphalt nanocomposite with titanium dioxide: Mechanical, rheological and photoactivity performance. Constr Build Mater 289:18–25. https://doi.org/10.1016/j.conbuildmat.2021.123178

    Article  CAS  Google Scholar 

  62. Ameli A, Hossein Pakshir A, Babagoli R et al (2020) Experimental investigation of the influence of Nano TiO2 on rheological properties of binders and performance of stone matrix asphalt mixtures containing steel slag aggregate. Constr Build Mater 265:120750. https://doi.org/10.1016/j.conbuildmat.2020.120750

    Article  CAS  Google Scholar 

  63. Shafabakhsh GA, Sadeghnejad M, Ahoor B, Taheri E (2020) Laboratory experiment on the effect of nano SiO2 and TiO2 on short and long-term aging behavior of bitumen. Constr Build Mater 237:117640. https://doi.org/10.1016/j.conbuildmat.2019.117640

    Article  CAS  Google Scholar 

  64. da Rocha-Segundo IG, Landi S, Oliveira SMB et al (2019) Photocatalytic asphalt mixtures: mechanical performance and impacts of traffic and weathering abrasion on photocatalytic efficiency. Catal Today. https://doi.org/10.1016/j.cattod.2018.07.012

    Article  Google Scholar 

  65. Buhari R, Abdullah ME, Ahmad MK et al (2018) Laboratory study on the fatigue resistance of asphaltic concrete containing titanium dioxide. E3S Web Conf 34:2–8. https://doi.org/10.1051/e3sconf/20183401021

    Article  CAS  Google Scholar 

  66. Azarhoosh AR, Moghadas Nejad F, Khodaii A (2016) Using the surface free energy method to evaluate the effects of nanomaterial on the fatigue life of hot mix asphalt. J Mater Civ Eng 28:1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0001614

    Article  CAS  Google Scholar 

  67. Shafabakhsh G, Mirabdolazimi SM, Sadeghnejad M (2014) Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures. Constr Build Mater 54:566–571. https://doi.org/10.1016/j.conbuildmat.2013.12.064

    Article  Google Scholar 

  68. Chen M, Xu G, Wu S, Zheng S (2010) High-temperature hazards and prevention measurements for asphalt pavement. In: 2010 International Conference on Mechanical Automation and Control Engineering MACE 2010 1341–1344. https://doi.org/10.1109/MACE.2010.5536275

  69. Miao Y, Sheng J, Ye J (2022) An assessment of the impact of temperature rise due to climate change on asphalt pavement in China. Sustain. https://doi.org/10.3390/su14159044

    Article  Google Scholar 

  70. Gong Z, Zhang L, Wu J et al (2022) Review of regulation techniques of asphalt pavement high temperature for climate change adaptation. J Infrastruct Preserv Resil. https://doi.org/10.1186/s43065-022-00054-5

    Article  Google Scholar 

  71. Zhu C, Zhang H, Zhang Y (2019) Influence of layered silicate types on physical, rheological and aging properties of SBS modified asphalt with multi-dimensional nanomaterials. Constr Build Mater 228:116735. https://doi.org/10.1016/j.conbuildmat.2019.116735

    Article  CAS  Google Scholar 

  72. Hu J, Yu X (2020) Performance evaluation of solar-responsive asphalt mixture with thermochromic materials and nano-TiO2 scatterers. Constr Build Mater 247:118605. https://doi.org/10.1016/j.conbuildmat.2020.118605

    Article  CAS  Google Scholar 

  73. Ji H, He D, Li B et al (2022) Evaluation of rheological and anti-aging properties of TPU/Nano-TiO2 composite-modified asphalt binder. Materials Basel. https://doi.org/10.3390/ma15093000

    Article  Google Scholar 

  74. Fu Z, Tang Y, Ma F et al (2022) Rheological properties of asphalt binder modified by nano-TiO2/ZnO and basalt fiber. Constr Build Mater 320:126323. https://doi.org/10.1016/j.conbuildmat.2022.126323

    Article  CAS  Google Scholar 

  75. Staub de Melo JV, Manfro AL, Barra BS et al (2023) Evaluation of the rheological behavior and the development of performance equations of asphalt composites produced with titanium dioxide and zinc oxide nanoparticles. Nanomaterials. https://doi.org/10.3390/nano13020288

    Article  Google Scholar 

  76. Enieb M, Cengizhan A, Karahancer S, Eltwati A (2023) Evaluation of physical-rheological properties of nano titanium dioxide modified asphalt binder and rutting resistance of modified mixture. Int J Pavement Res Technol 16:285–303. https://doi.org/10.1007/s42947-021-00131-0

    Article  Google Scholar 

  77. Jin J, Xiao T, Tan Y et al (2018) Effects of TiO2 pillared montmorillonite nanocomposites on the properties of asphalt with exhaust catalytic capacity. J Clean Prod 205:339–349. https://doi.org/10.1016/j.jclepro.2018.08.251

    Article  CAS  Google Scholar 

  78. Zou X, Sha A, Ding B et al (2017) Evaluation and analysis of variance of storage stability of asphalt binder modified by nanotitanium dioxide. Adv Mater Sci Eng. https://doi.org/10.1155/2017/6319697

    Article  Google Scholar 

  79. Zheng D, Qian Z, Li P, Wang L (2019) Performance evaluation of high-elasticity asphalt mixture containing inorganic nano-titanium dioxide for applications in high altitude regions. Constr Build Mater 199:594–600. https://doi.org/10.1016/j.conbuildmat.2018.12.053

    Article  CAS  Google Scholar 

  80. Yan-qing L (2014) Study on the impact of different doses of on performance of modified asphalt mixture. In: 7th International conference on intelligent computation technology and automation

  81. Lein W, Ph D, Decarlo C (2020) Impact of additives on low-temperature cracking properties of soft binders used in cold regions. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003366

    Article  Google Scholar 

  82. Abdalfattah IA, Mogawer WS, Stuart K (2021) Quanti fi cation of the degree of blending in hot-mix asphalt (HMA) with reclaimed asphalt pavement (RAP) using Energy Dispersive X- Ray Spectroscopy ( EDX ) analysis. J Clean Prod 294:126261. https://doi.org/10.1016/j.jclepro.2021.126261

    Article  CAS  Google Scholar 

  83. Yang S, Yan K, He B et al (2018) Ultraviolet and PAV aging procedures influence on rheological characteristics of Sasobit/SBS modified binder containing titanium dioxide nanoparticles. Pet Sci Technol 36:1524–1530. https://doi.org/10.1080/10916466.2018.1476535

    Article  CAS  Google Scholar 

  84. Hamedipour AM, Shafabakhsh G, Sadeghnejad M (2022) The impact of nano-TiO2 particles on the moisture susceptibility and fracture toughness of HMA under mixed-mode I/II loading and various crack geometry and temperatures. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004614

    Article  Google Scholar 

  85. Sirin O, Paul DK, Kassem E (2018) State of the art study on aging of asphalt mixtures and use of antioxidant additives. Adv Civ Eng. https://doi.org/10.1155/2018/3428961

    Article  Google Scholar 

  86. Moreno-Navarro F, Sol-Sánchez M, García-Travé G, Rubio-Gámez MC (2018) Fatigue cracking in asphalt mixtures: the effects of ageing and temperature. Road Mater Pavement Des 19:561–570. https://doi.org/10.1080/14680629.2018.1418717

    Article  Google Scholar 

  87. da Rocha-Segundo IG, Dias EAL, Fernandes FDP et al (2019) Photocatalytic asphalt pavement: the physicochemical and rheological impact of TiO2 nano/microparticles and ZnO microparticles onto the bitumen. Road Mater Pavement Des 20:1452–1467. https://doi.org/10.1080/14680629.2018.1453371

    Article  CAS  Google Scholar 

  88. Korniejenko K, Nykiel M, Choinska M et al (2023) An overview of micro- and nano-dispersion additives for asphalt and bitumen for road construction. Building. https://doi.org/10.3390/buildings13122948

    Article  Google Scholar 

  89. Steyn W (2011) Analysis of bitumen properties during ageing using atomic force microscopy. Geotech Spec. https://doi.org/10.1061/47634(413)4

    Article  Google Scholar 

  90. Xie Z, Tang L, Tao M et al (2023) The properties of modified bagasse fiber/nano-TiO2 composite asphalt in a high-temperature and high-humidity salt environment. Materials (Basel). https://doi.org/10.3390/ma16175996

    Article  Google Scholar 

  91. Cao X, Deng M, Ding Y et al (2021) Effect of photocatalysts modification on asphalt: investigations by experiments and theoretical calculation. J Mater Civ Eng 33:1–9. https://doi.org/10.1061/(asce)mt.1943-5533.0003708

    Article  CAS  Google Scholar 

  92. Ren J, Zang G, Wang S et al (2020) Investigating the pavement performance and aging resistance of modified bio-asphalt with nano-particles. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0238817

    Article  CAS  Google Scholar 

  93. Sun S, Wang Y, Zhang A (2011) Study on anti-ultraviolet radiation aging property of TiO2 modified asphalt. Adv Mater Res 306–307:951–955. https://doi.org/10.4028/www.scientific.net/AMR.306-307.951

    Article  CAS  Google Scholar 

  94. Hassan MM, Mohammad LN, Cooper SB, Dylla H (2011) Evaluation of nano-titanium dioxide additive on asphalt binder aging properties. Transp Res Rec 1972:11–15. https://doi.org/10.3141/2207-02

    Article  Google Scholar 

  95. Trujillo-Valladolid M, Alcántar-Vázquez B, Ramírez-Zamora RM, Ossa-López A (2021) Influence of aging on the physicochemical behavior of photocatalytic asphalt cements subjected to the natural environment. Constr Build Mater 295:123597. https://doi.org/10.1016/j.conbuildmat.2021.123597

    Article  CAS  Google Scholar 

  96. Ali H, Izzi N, Mubaraki M, Ceylan H (2020) Effects of moisture damage on asphalt mixtures. J Traffic Transp Eng (English Ed) 7:600–628. https://doi.org/10.1016/j.jtte.2020.07.001

    Article  Google Scholar 

  97. Wu H, Li P, Nian T et al (2019) Evaluation of asphalt and asphalt mixtures ’ water stability method under multiple freeze-thaw cycles. Constr Build Mater 228:117089. https://doi.org/10.1016/j.conbuildmat.2019.117089

    Article  Google Scholar 

  98. Asadi M, Modarres A, Ayar P (2021) Effect of polymer modified bitumen emulsion production method on the durability of recycled asphalt mixture in the presence of deicing agents. Constr Build Mater 307:124958. https://doi.org/10.1016/j.conbuildmat.2021.124958

    Article  CAS  Google Scholar 

  99. Zhang W, Hu K, Han S, Liu Z (2018) A study to assess the effect of asphalt mixture on the photocatalytic performance : a simulation. J Petrol Sci Technol 8:14–28. https://doi.org/10.22078/jpst.2017.2241.1396

    Article  CAS  Google Scholar 

  100. Kameya Y, Yabe H (2019) Optical and superhydrophilic characteristics of TiO2 coating with subwavelength surface structure consisting of spherical nanoparticle aggregates. Coatings. https://doi.org/10.3390/coatings9090547

    Article  Google Scholar 

  101. Li H, Lin X, Wang H (2021) Fabrication and evaluation of nano-TiO2 superhydrophobic coating on asphalt pavement. Materials (Basel) 14:1–16. https://doi.org/10.3390/ma14010211

    Article  CAS  Google Scholar 

  102. Mahpour A, Khodadadi M, Moghadas Nejadd F (2023) Investigation the moisture susceptibility of warm-mix asphalt modified with nano-TiO2 and waste rubber granules. J transporation Res. https://doi.org/10.22034/tri.2022.298153.2933

    Article  Google Scholar 

  103. Sadeghnejad M, Shafabakhsh G (2017) Use of nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures. Constr Build Mater 157:965–974. https://doi.org/10.1016/j.conbuildmat.2017.09.163

    Article  CAS  Google Scholar 

  104. Chen M, Liu Y (2010) NOx removal from vehicle emissions by functionality surface of asphalt road. J Hazard Mater 174:375–379. https://doi.org/10.1016/j.jhazmat.2009.09.062

    Article  CAS  Google Scholar 

  105. Shu J, Wang X, Yang B, Wang X (2022) Research on a new loading method for nano TiO2 photocatalytic asphalt pavement. Sustain. https://doi.org/10.3390/su141911977

    Article  Google Scholar 

  106. Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:1901997. https://doi.org/10.1002/adma.201901997

    Article  CAS  Google Scholar 

  107. Agrios AG, Pichat P (2005) State of the art and perspectives on materials and applications of photocatalysis over TiO2. J Appl Electrochem 35:655–663. https://doi.org/10.1007/s10800-005-1627-6

    Article  CAS  Google Scholar 

  108. Kočí K, Obalová L, Matějová L et al (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B Environ 89:494–502. https://doi.org/10.1016/j.apcatb.2009.01.010

    Article  CAS  Google Scholar 

  109. Khavandi Khiavi A, Yamini N, Asadi M (2023) Effect of different adding methods of Nano-TiO2 to micro-surfacing layer on NOx degradation. Road Mater Pavement Des. https://doi.org/10.1080/14680629.2023.2266476

    Article  Google Scholar 

  110. Wu H, Shen A, Yang X et al (2021) Effect of TiO2/CeO2 on photocatalytic degradation capability and pavement performance of asphalt mixture with steel slag. J Mater Civ Eng 33:4021234. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003899

    Article  CAS  Google Scholar 

  111. Sun X, Liu Z, Qin X et al (2020) Purifying effect evaluation of pavement surfacing materials modified by novel modifying agent. Front Mater 7:180. https://doi.org/10.3389/fmats.2020.00180

    Article  Google Scholar 

  112. Zhang W, Zhang YX, Jia Z et al (2019) Test method and material design of asphalt mixture with the function of photocatalytic decomposition of automobile exhaust. Constr Build Mater 215:298–309. https://doi.org/10.1016/j.conbuildmat.2019.04.196

    Article  CAS  Google Scholar 

  113. Hu K, Li Y, Chen Y, Zhang H (2019) Property of photocatalytic asphalt mixtures based on the characteristics of gaseous and particulate pollutants. Transportation research congress 2017: sustainable, smart, and resilient transportation. American Society of Civil Engineers Reston, VA, pp 79–92

    Chapter  Google Scholar 

  114. Xu P, Gao J, Pei J et al (2019) Evaluation of NO2-degradation by the rubber-titanium-aluminum ultrafine grained micro-surfacing material and its effect on pavement performance. Int J Pavement Res Technol 12:70–77. https://doi.org/10.1007/s42947-019-0009-0

    Article  Google Scholar 

  115. Cao X, Yang X, Wu T et al (2019) g-C3N4/TiO2 photocatalyst and its performance of NO degradation in emulsified asphalt. J Mater Civ Eng 31:4019031. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002580

    Article  CAS  Google Scholar 

  116. Huang M, Wen X (2019) Experimental study on photocatalytic effect of nano TiO2 epoxy emulsified asphalt mixture. Appl Sci 9:2464. https://doi.org/10.3390/app9122464

    Article  CAS  Google Scholar 

  117. Wang XL, Liu LP, Xu HM (2013) Application of nano-TiO2 used in road engineering and its long-term decomposition effect. In: Advanced materials research. Trans Tech Publ, pp 167–172

  118. Zhang L, Lu Q, Shan R et al (2021) Photocatalytic degradation of vehicular exhaust by nitrogen-doped titanium dioxide modified pavement material. Transp Res Part D Transp Environ 91:102690. https://doi.org/10.1016/j.trd.2020.102690

    Article  Google Scholar 

  119. Cadorin ND, de Melo JVS, Broering WB et al (2021) Asphalt nanocomposite with titanium dioxide: mechanical, rheological and photoactivity performance. Constr Build Mater 289:123178. https://doi.org/10.1016/j.conbuildmat.2021.123178

    Article  CAS  Google Scholar 

  120. Fan W, Chan KY, Zhang C et al (2018) Solar photocatalytic asphalt for removal of vehicular NOx: a feasibility study. Appl Energy 225:535–541. https://doi.org/10.1016/j.apenergy.2018.04.134

    Article  CAS  Google Scholar 

  121. Leng Z, Yu H, Gao Z (2018) Study on air-purifying performance of asphalt mixture specimens coated with titanium dioxide using different methods. Int J Pavement Res Technol. https://doi.org/10.1016/j.ijprt.2018.08.003

    Article  Google Scholar 

  122. Chen M, Baglee D, Chu JW et al (2017) Photocatalytic oxidation of NOx under visible light on asphalt pavement surface. J Mater Civ Eng 29:1. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001972

    Article  Google Scholar 

  123. Tang B, Liu X, Huang W, Cao X (2017) Preparation of La-doped nanometer TiO2 and its application for NO removal on asphalt concrete. Road Mater Pavement Des 18:43–53. https://doi.org/10.1080/14680629.2017.1329860

    Article  CAS  Google Scholar 

  124. Osborn D, Hassan M, Asadi S, White JR (2014) Durability quantification of TiO2 surface coating on concrete and asphalt pavements. J Mater Civ Eng 26:331–337. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000816

    Article  CAS  Google Scholar 

  125. Asadi S, Hassan M, Nadiri A, Dylla H (2014) Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification. Environ Sci Pollut Res 21:8847–8857. https://doi.org/10.1007/s11356-014-2821-z

    Article  CAS  Google Scholar 

  126. Hassan M, Mohammad LN, Asadi S et al (2013) Sustainable photocatalytic asphalt pavements for mitigation of nitrogen oxide and sulfur dioxide vehicle emissions. J Mater Civ Eng 25:365–371. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000613

    Article  CAS  Google Scholar 

  127. Xudong H, Fan Z, Zhihang Y, et al (2021) Study on Mix Proportion Optimization of Nano-TiO2 Composite Photocatalyst for Pervious Asphalt Pavement. In: IOP conference series: earth and environmental science. IOP Publishing, p 12147

  128. Muzakkar MZ, Nurdin M, Ismail I et al (2020) TiO2 Coated-asphalt buton photocatalyst for high-performance motor vehicles gas emission mitigation. Emiss Control Sci Technol 6:28–36. https://doi.org/10.1007/s40825-019-00132-3

    Article  CAS  Google Scholar 

  129. Hu D, Li R, Li M et al (2018) Photocatalytic efficiencies of WO3/TiO2 nanoparticles for exhaust decomposition under UV and visible light irradiation. Mater Res Expr 5(9):95029

    Article  Google Scholar 

  130. Wang D, Leng Z, Yu H et al (2017) Durability of epoxy-bonded TiO2-modified aggregate as a photocatalytic coating layer for asphalt pavement under vehicle tire polishing. Wear 382:1–7. https://doi.org/10.1016/j.wear.2017.04.004

    Article  CAS  Google Scholar 

  131. Wang D, Leng Z, Hüben M et al (2016) Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material. Constr Build Mater 107:44–51. https://doi.org/10.1016/j.conbuildmat.2015.12.164

    Article  CAS  Google Scholar 

  132. Hu C, Ma J, Jiang H et al (2016) Study on exhaust degradation material for asphalt pavement. Geo-China 2016:38–44

    Google Scholar 

  133. Carneiro JO, Azevedo S, Teixeira V et al (2013) Development of photocatalytic asphalt mixtures by the deposition and volumetric incorporation of TiO2 nanoparticles. Constr Build Mater 38:594–601. https://doi.org/10.1016/j.conbuildmat.2012.09.005

    Article  CAS  Google Scholar 

  134. Luttrell T, Halpegamage S, Tao J et al (2015) Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci Rep 4:1–8. https://doi.org/10.1038/srep04043

    Article  CAS  Google Scholar 

  135. Li D, Song H, Meng X et al (2020) Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 10:1–14. https://doi.org/10.3390/nano10030546

    Article  CAS  Google Scholar 

  136. Lei J, Zheng N, Luo F, He Y (2021) Purification of automobile exhaust gas by activated carbon supported Fe3+ modified nano-TiO2 and its application on asphalt pavement. Road Mater Pavement Des 22:2424–2440. https://doi.org/10.1080/14680629.2020.1763831

    Article  CAS  Google Scholar 

  137. Cao X, Yang X, Li H et al (2017) Investigation of Ce-TiO2 photocatalyst and its application in asphalt-based specimens for NO degradation. Constr Build Mater 148:824–832. https://doi.org/10.1016/j.conbuildmat.2017.05.095

    Article  CAS  Google Scholar 

  138. Guo Y, Jie Y, Shen X (2020) Evaluation on the comprehensive degradation effect of photocatalytic pavement material on vehicle exhaust gas. In: IOP Conference series: earth and environmental science. IOP Publishing, p 42027

  139. Wang C, Wang ZH (2017) Projecting population growth as a dynamic measure of regional urban warming. Sustain Cities Soc 32:357–365. https://doi.org/10.1016/j.scs.2017.04.010

    Article  CAS  Google Scholar 

  140. Klein T, Anderegg WRL (2021) A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sustain Cities Soc 73:103098. https://doi.org/10.1016/j.scs.2021.103098

    Article  Google Scholar 

  141. Qin Y (2015) A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev 52:445–459. https://doi.org/10.1016/j.rser.2015.07.177

    Article  Google Scholar 

  142. Santamouris M (2013) Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renew Sustain Energy Rev 26:224–240. https://doi.org/10.1016/j.rser.2013.05.047

    Article  Google Scholar 

  143. Gong X, Liu Q, Lv Y et al (2023) A systematic review on the strategies of reducing asphalt pavement temperature. Case Stud Constr Mater 18:e01852. https://doi.org/10.1016/j.cscm.2023.e01852

    Article  Google Scholar 

  144. Lima O, Freitas E, Cardoso P et al (2023) Mitigation of urban heat island effects by thermochromic asphalt pavement. Coatings. https://doi.org/10.3390/coatings13010035

    Article  Google Scholar 

  145. Mirzaei PA (2015) Recent challenges in modeling of urban heat island. Sustain Cities Soc 19:200–206. https://doi.org/10.1016/j.scs.2015.04.001

    Article  Google Scholar 

  146. Rizwan AM, Dennis LYC, Liu C (2008) A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20:120–128. https://doi.org/10.1016/S1001-0742(08)60019-4

    Article  CAS  Google Scholar 

  147. Gholami Z, Jalilisadrabad S, Amrollahi R (2023) Investigating the impact of using modified cool materials by titanium dioxide (TiO2) -based photocatalytic self-cleaning nanoparticles in urban facades on urban microclimate parameters. Case Stud Constr Mater 19:e02268. https://doi.org/10.1016/j.cscm.2023.e02268

    Article  Google Scholar 

  148. Rahman T, Zudhy M, Noor A, Fahmi MR (2023) Knowledge mapping of cool pavement technologies for urban heat island Mitigation: a Systematic bibliometric analysis. Energy Build. https://doi.org/10.1016/j.enbuild.2023.113133

    Article  Google Scholar 

  149. Ghamarpoor R, Fallah A, Jamshidi M (2023) Investigating the use of titanium dioxide (TiO2) nanoparticles on the amount of protection against UV irradiation. Sci Rep 13:1–12. https://doi.org/10.1038/s41598-023-37057-5

    Article  CAS  Google Scholar 

  150. Khorasaninejad M, Chen WT, Zhu AY et al (2017) Visible wavelength planar metalenses based on titanium dioxide. IEEE J Sel Top Quantum Electron 23:43–58. https://doi.org/10.1109/JSTQE.2016.2616447

    Article  Google Scholar 

  151. Badin G, Ahmad N, Ali HM et al (2021) Effect of addition of pigments on thermal characteristics and the resulting performance enhancement of asphalt. Constr Build Mater 302:124212. https://doi.org/10.1016/j.conbuildmat.2021.124212

    Article  CAS  Google Scholar 

  152. Szirmai P, Farkas B, Berger H, Forró L (2019) Tailoring thermal conduction in anatase TiO2. Commun Phys. https://doi.org/10.1038/s42005-019-0224-7

    Article  Google Scholar 

  153. Fernández-Mira M, Jimenez-Relinque E, Martínez I, Castellote M (2021) Evaluation of changes in surface temperature of TiO2 functionalized pavements at outdoor conditions. Energy Build. https://doi.org/10.1016/j.enbuild.2021.110817

    Article  Google Scholar 

  154. Zheng N, Lei J, Wang S et al (2020) Influence of heat reflective coating on the cooling and pavement performance of large void asphalt pavement. Coatings 10:1–15. https://doi.org/10.3390/coatings10111065

    Article  CAS  Google Scholar 

  155. Chen J, Zhou Z, Wu J et al (2019) Field and laboratory measurement of albedo and heat transfer for pavement materials. Constr Build Mater 202:46–57. https://doi.org/10.1016/j.conbuildmat.2019.01.028

    Article  CAS  Google Scholar 

  156. Hu J, Liu H, Li Y, Ma T (2023) Highly reflective and fluorescent TiO2 quantum dots modified asphalt coating: engineering characterizations and microclimatic modelling. Constr Build Mater 401:132701. https://doi.org/10.1016/j.conbuildmat.2023.132701

    Article  CAS  Google Scholar 

  157. Rosta S (2023) Skid resistance of asphalt pavements. Eng. https://doi.org/10.3390/eng4020091

    Article  Google Scholar 

  158. Shah SNA, Shah Z, Hussain M, Khan M (2017) Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg Chem Appl. https://doi.org/10.1155/2017/4101735

    Article  Google Scholar 

  159. Ayorinde T, Sayes CM (2023) An updated review of industrially relevant titanium dioxide and its environmental health effects. J Hazard Mater Lett 4:100085. https://doi.org/10.1016/j.hazl.2023.100085

    Article  CAS  Google Scholar 

  160. Jackett M, Frith W (2013) Quantifying the impact of road lighting on road safety—a New Zealand Study. IATSS Res 36:139–145. https://doi.org/10.1016/j.iatssr.2012.09.001

    Article  Google Scholar 

  161. Mehri A, Hajizadeh R, Farhang Dehghan S et al (2017) Safety evaluation of the lighting at the entrance of a very long road tunnel: a case study in Ilam. Saf Health Work 8:151–155. https://doi.org/10.1016/j.shaw.2016.06.002

    Article  Google Scholar 

  162. Lunkevičiūtė D, Vorobjovas V, Vitta P, Čygas D (2023) Research of the luminance of asphalt pavements in trafficked areas. Sustain. https://doi.org/10.3390/su15032826

    Article  Google Scholar 

  163. Azadgoleh MA, Mohammadi MM, Ghodrati A et al (2022) Characterization of contaminant leaching from asphalt pavements: a critical review of measurement methods, reclaimed asphalt pavement, porous asphalt, and waste-modified asphalt mixtures. Water Res 219:118584. https://doi.org/10.1016/j.watres.2022.118584

    Article  CAS  Google Scholar 

  164. Malakar A, Snow DD (2020) Nanoparticles as sources of inorganic water pollutants. INC

  165. Ahmed HU, Mohammed AS, Faraj RH et al (2023) Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles. Neural Comput Appl 35:12453–12479. https://doi.org/10.1007/s00521-023-08378-3

    Article  Google Scholar 

  166. Maglad AM, Zaid O, Arbili MM et al (2022) A study on the properties of geopolymer concrete modified with nano graphene oxide. Buildings. https://doi.org/10.3390/buildings12081066

    Article  Google Scholar 

  167. Bersch JD, Flores-Colen I, Masuero AB, Dal Molin DC (2023) Photocatalytic TiO2-based coatings for mortars on facades: a review of efficiency, durability, and sustainability. Buildings. https://doi.org/10.3390/buildings13010186

    Article  Google Scholar 

Download references

Funding

This research was supported by Iran University of Science and Technology (Grant No. 160/24563).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooyan Ayar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Copyrights for articles published in Innovative Infrastructure Solutions are retained by the authors, with first publication rights granted to Innovative Infrastructure Solutions.

Informed consent

As a review paper, this article does not involve primary research or data collection on human subjects; therefore, informed consent was not applicable for this study.

Consent to publication

As a review paper, this article does not involve primary research or data collection on human subjects; therefore, consent to publish was not applicable for this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayar, P., Ruhi, A., Baibordy, A. et al. Toward sustainable roads: a critical review on nano-TiO2 application in asphalt pavement. Innov. Infrastruct. Solut. 9, 148 (2024). https://doi.org/10.1007/s41062-024-01450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01450-4

Keywords

Navigation