Skip to main content
Log in

Comparative study on the effect of incorporation of Linz-Donawitz slag as coarse aggregate in concrete reinforced with different fibers

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This study aims to evaluate the performance of concrete using Linz-Donawitz (LD) slag as a replacement for natural coarse aggregates (NCA) with different fibers in concrete. Four different types of fibers, namely polypropylene fiber (PPF), glass fiber (GF), basalt fiber (BF), and steel fiber (SF), were added to assess their impact on concrete properties. LD slag, originating as a by-product of the steel manufacturing process, not only offers an environmentally sustainable alternative to NCA but also augments the overall structural performance of concrete. Because of the presence of free lime, the use of LD slag in concrete may lead to volume expansion and cracking in the concrete. However, adding fibers can mitigate this issue by enhancing tensile strength and reducing microcracking. The research findings revealed that adding fibers to LD slag concrete greatly improves its mechanical and durability qualities. Among all, SF demonstrated the greatest effectiveness in enhancing mechanical properties, while BF showed notable improvements in durability. PPF and GF also exhibit promising results, however, to a lesser extent compared to steel and basalt fibers. Overall, the study concludes that the integration of fibers enhances the efficiency of concrete incorporating LD slag, improving both mechanical properties and durability. The research highlights the potential of LD slag as a sustainable and cost-effective alternative to NCA in concrete. Additionally, it emphasizes the benefits of using different fiber types to enhance concrete mixtures. The outcomes of this study provide valuable insights for sustainable and durable construction practices using LD slag concrete with fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Aghajanian A, Cimentada A, Behfarnia K, Brand AS, Thomas C (2023) Microstructural analysis of siderurgical aggregate concrete reinforced with fibers. J Build Eng. https://doi.org/10.1016/j.jobe.2022.105543

    Article  Google Scholar 

  2. Mohanta NR, Murmu M (2022) Alternative coarse aggregate for sustainable and eco-friendly concrete—A review. J Build Eng. https://doi.org/10.1016/j.jobe.2022.105079

    Article  Google Scholar 

  3. Gencel O, Karadag O, Oren OH, Bilir T (2021) Steel slag and its applications in cement and concrete technology: a review. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.122783

    Article  Google Scholar 

  4. Dong Q, Wang G, Chen X, Tan J, Gu X (2021) Recycling of steel slag aggregate in Portland cement concrete: an overview. J Cleaner Prod. https://doi.org/10.1016/j.jclepro.2020.124447

    Article  Google Scholar 

  5. Xu S, Wu C, Yue J, Xu Z (2022) Shrinkage and mechanical properties of fibre-reinforced blast furnace slag-steel slag-based geopolymer. Adv Civil Eng. https://doi.org/10.1155/2022/8931401

    Article  Google Scholar 

  6. Kumar MM, Sivakumar VL, Devi VS, Nagabhooshanam N, Thanappan S (2022) Investigation on durability behavior of fiber reinforced concrete with steel slag/bacteria beneath diverse exposure conditions. Adv Mater Sci Eng. https://doi.org/10.1155/2022/4900241

    Article  Google Scholar 

  7. Rashad AM (2022) Behavior of steel slag aggregate in mortar and concrete—a comprehensive overview. J Build Eng. https://doi.org/10.1016/j.jobe.2022.104536

    Article  Google Scholar 

  8. Zhao Q, Wang Y, Xie M, Huang B (2022) Experimental study on mechanical behavior of steel fiber reinforced geopolymeric recycled aggregate concrete. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.129267

    Article  Google Scholar 

  9. Li B, Yu S, Gao B, Li Y, Wu F, Xia D, Chi Y, Wang S (2023) Effect of recycled aggregate and steel fiber contents on the mechanical properties and sustainability aspects of alkali-activated slag-based concrete. J Build Eng 66:105939. https://doi.org/10.1016/j.jobe.2023.105939

    Article  Google Scholar 

  10. Mohanta NR, Murmu M (2023) Performance assessment of Linz-Donawitz slag as alternative coarse aggregate in concrete: a comprehensive study on mechanical and durability properties. Innov Infrastruct Solut 8:281. https://doi.org/10.1007/s41062-023-01257-9

    Article  Google Scholar 

  11. Singh P, Roy ABD, Singh H (2022) Mechanical and durability properties of concrete incorporating weathered coarse Linz-Donawitz (LD) steel slag. J Build Eng 61:105301. https://doi.org/10.1016/j.jobe.2022.105301

    Article  Google Scholar 

  12. Nemade PA, Pasla D, Chandrappa AK (2023) Durability assessment of concrete with natural and Linz Donawitz slag as coarse aggregates. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2023.132617

    Article  Google Scholar 

  13. Santillán N, Speranza S, Torrents JM, Segura I (2022) Evaluation of conductive concrete made with steel slag aggregates. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.129515

    Article  Google Scholar 

  14. Lai MH, Zou J, Yao B, Ho JCM, Zhuang X, Wang Q (2021) Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.122269

    Article  Google Scholar 

  15. Caballero-Jorna M, Roig-Flores M, Serna P (2023) Influence of short-term operating temperatures on compression and flexural behaviour of macro synthetic and steel fibre reinforced concretes. J Build Eng. https://doi.org/10.1016/j.jobe.2023.105919

    Article  Google Scholar 

  16. Aisheh YIA, Atrushi DS, Akeed MH, Qaidi S, Tayeh BA (2022) Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. Case Stud Construct Mater. https://doi.org/10.1016/j.cscm.2022.e01234

    Article  Google Scholar 

  17. Amran M, Fediuk R, Klyuev S, Qader DN (2022) Sustainable development of basalt fiber-reinforced high-strength eco-friendly concrete with a modified composite binder. Case Stud Construct Mater. https://doi.org/10.1016/j.cscm.2022.e01550

    Article  Google Scholar 

  18. Ahmad J, González-Lezcano RA, Majdi A, Ben Kahla N, Deifalla AF, El-Shorbagy MA (2022) Glass fibers reinforced concrete: overview on mechanical durability and microstructure analysis. Materials. https://doi.org/10.3390/ma15155111

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang B, Li F, Zhu H, Yang Z, Dong Z, Chen J (2022) Basalt FRP-confined slag-based alkali-activated seawater coral aggregate concrete: concept and axial stress-strain behavior. Eng Struct. https://doi.org/10.1016/j.engstruct.2022.114890

    Article  Google Scholar 

  20. Xu Z, Li J, Qian H, Wu C (2022) Blast resistance of hybrid steel and polypropylene fibre reinforced ultra-high performance concrete after exposure to elevated temperatures. Compos Struct. https://doi.org/10.1016/j.compstruct.2022.115771

    Article  Google Scholar 

  21. Kuranlı ÖF, Uysal M, Abbas MT, Cosgun T, Niş A, Aygörmez Y, Canpolat O, Al-mashhadani MM (2022) Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Construct Buildg Materials. https://doi.org/10.1016/j.conbuildmat.2022.126747

    Article  Google Scholar 

  22. Hammad N, ElNemr AM, Hassan HED (2022) Flexural performance of reinforced Alkali-activated concrete beams incorporating steel and structural Macro synthetic polypropylene fiber. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.126634

    Article  Google Scholar 

  23. Du X, Li Y, Si Z, Huang L, Chen X (2022) Effects of basalt fiber and polyvinyl alcohol fiber on the properties of recycled aggregate concrete and optimization of fiber contents. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.127646

    Article  Google Scholar 

  24. Li P, Jiang J, Liu G, Ren Z (2022) Physical, mechanical, thermal and sustainable properties of UHPC with converter steel slag aggregates. Case Stud Construct Mater. https://doi.org/10.1016/j.cscm.2022.e01458

    Article  Google Scholar 

  25. Kb R, Kannan KR (2022) Impact of hybrid steel fibres on fresh and mechanical properties of self-compacting concrete. Case Stud Construct Mater. https://doi.org/10.1016/j.cscm.2022.e01274

    Article  Google Scholar 

  26. Ahmad J, Zhou Z (2022) Mechanical properties of natural as well as synthetic fiber reinforced concrete: a review. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.127353

    Article  Google Scholar 

  27. Ortega-López V, García-Llona A, Revilla-Cuesta V, Santamaría A, San-José JT (2021) Fiber-reinforcement and its effects on the mechanical properties of high-workability concretes manufactured with slag as aggregate and binder. J Build Eng. https://doi.org/10.1016/j.jobe.2021.102548

    Article  Google Scholar 

  28. Zhou X, Zeng Y, Chen P, Jiao Z, Zheng W (2021) Mechanical properties of basalt and polypropylene fibre-reinforced alkali-activated slag concrete. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121284

    Article  Google Scholar 

  29. Wu F, Liu C, Diao Z, Feng B, Sun W, Li X, Zhao S (2018) Improvement of mechanical properties in polypropylene- and glass-fibre-reinforced peach shell lightweight concrete. Adv Mater Sci Eng. https://doi.org/10.1155/2018/6250941

    Article  Google Scholar 

  30. Papachristoforou M, Anastasiou EK, Papayianni I (2020) Durability of steel fiber reinforced concrete with coarse steel slag aggregates including performance at elevated temperatures. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120569

    Article  Google Scholar 

  31. Nguyen TTH, Mai HH, Phan DH, Nguyen DL (2020) Responses of concrete using steel slag as coarse aggregate replacement under splitting and flexure. Sustainability (Switzerland). https://doi.org/10.3390/SU12124913

    Article  PubMed Central  Google Scholar 

  32. Khan M, Cao M, Ali M (2020) Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101272

    Article  Google Scholar 

  33. Meng C, Li W, Cai L, Shi X, Jiang C (2020) Experimental research on durability of high-performance synthetic fibers reinforced concrete: Resistance to sulfate attack and freezing-thawing. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120055

    Article  Google Scholar 

  34. Sohail MG, Alnahhal W, Taha A, Abdelaal K (2020) Sustainable alternative aggregates: characterization and influence on mechanical behavior of basalt fiber reinforced concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119365

    Article  Google Scholar 

  35. Monaldo E, Nerilli F, Vairo G (2019) Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos Struct 214:246–263. https://doi.org/10.1016/j.compstruct.2019.02.002

    Article  Google Scholar 

  36. Pakravan HR, Ozbakkaloglu T (2019) Synthetic fibers for cementitious composites: a critical and in-depth review of recent advances. Constr Build Mater 207:491–518. https://doi.org/10.1016/j.conbuildmat.2019.02.078

    Article  CAS  Google Scholar 

  37. Ranjan Mohanta N, Samantaray S (2019) Science & technology study of combined effect of metakaolin and steel fiber on mechanical properties of concrete. Pertanika J Sci Technol 27(3):1381–1396

    Google Scholar 

  38. Grzymski F, Musiał M, Trapko T (2019) Mechanical properties of fibre reinforced concrete with recycled fibres. Constr Build Mater 198:323–331. https://doi.org/10.1016/j.conbuildmat.2018.11.183

    Article  Google Scholar 

  39. Wang J, Dai Q, Si R, Guo S (2019) Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete. J Clean Prod 234:1351–1364. https://doi.org/10.1016/j.jclepro.2019.06.272

    Article  CAS  Google Scholar 

  40. Liu F, Ding W, Qiao Y (2019) Experimental investigation on the flexural behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.116706

    Article  Google Scholar 

  41. Guo X, Pan X (2018) Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Constr Build Mater 179:633–641. https://doi.org/10.1016/j.conbuildmat.2018.05.198

    Article  CAS  ADS  Google Scholar 

  42. Noushini A, Hastings M, Castel A, Aslani F (2018) Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Constr Build Mater 186:454–475. https://doi.org/10.1016/j.conbuildmat.2018.07.110

    Article  CAS  Google Scholar 

  43. Alberti MG, Enfedaque A, Gálvez JC (2017) On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete. Cement Concr Compos 77:29–48. https://doi.org/10.1016/j.cemconcomp.2016.11.008

    Article  CAS  Google Scholar 

  44. Simões T, Costa H, Dias-da-Costa D, Júlio E (2017) Influence of fibres on the mechanical behaviour of fibre reinforced concrete matrixes. Constr Build Mater 137:548–556. https://doi.org/10.1016/j.conbuildmat.2017.01.104

    Article  CAS  Google Scholar 

  45. Biskri Y, Achoura D, Chelghoum N, Mouret M (2017) Mechanical and durability characteristics of high-performance concrete containing steel slag and crystalized slag as aggregates. Constr Build Mater 150:167–178. https://doi.org/10.1016/j.conbuildmat.2017.05.083

    Article  CAS  Google Scholar 

  46. Saidani M, Saraireh D, Gerges M (2016) Behaviour of different types of fibre reinforced concrete without admixture. Eng Struct 113:328–334. https://doi.org/10.1016/j.engstruct.2016.01.041

    Article  Google Scholar 

  47. Branston J, Das S, Kenno SY, Taylor C (2016) Mechanical behaviour of basalt fibre reinforced concrete. Constr Build Mater 124:878–886. https://doi.org/10.1016/j.conbuildmat.2016.08.009

    Article  CAS  Google Scholar 

  48. Fiore V, Scalici T, di Bella G, Valenza A (2015) A review on basalt fibre and its composites. Compos B Eng 74:74–94. https://doi.org/10.1016/j.compositesb.2014.12.034

    Article  CAS  Google Scholar 

  49. Hilles MM, Ziara MM (2019) Mechanical behavior of high strength concrete reinforced with glass fiber. Eng Sci Technol Int J 22(3):920–928. https://doi.org/10.1016/j.jestch.2019.01.003

    Article  Google Scholar 

  50. Jiang C, Fan K, Wu F, Chen D (2014) Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater Des 58:187–193. https://doi.org/10.1016/j.matdes.2014.01.056

    Article  CAS  Google Scholar 

  51. San-José JT, Vegas I, Arribas I, Marcos I (2014) The performance of steel-making slag concretes in the hardened state. Mater Des 60:612–619. https://doi.org/10.1016/j.matdes.2014.04.030

    Article  CAS  Google Scholar 

  52. Brühwiler E, Denarié E (2013) Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete. Struct Eng Int J Int Assoc Bridge Struct Eng (IABSE) 23(4):450–457. https://doi.org/10.2749/101686613X13627347100437

    Article  Google Scholar 

  53. Xu Z, Hao H, Li HN (2012) Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres. Mater Des 33(1):42–55. https://doi.org/10.1016/j.matdes.2011.07.004

    Article  CAS  Google Scholar 

  54. Wang Q, Yan PY, Han S (2011) The influence of steel slag on the hydration of cement during the hydration process of complex binder. Sci China Technol Sci 54(2):388–394. https://doi.org/10.1007/s11431-010-4204-0

    Article  CAS  ADS  Google Scholar 

  55. Soulioti DV, Barkoula NM, Paipetis A, Matikas TE (2011) Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete. Strain. https://doi.org/10.1111/j.1475-1305.2009.00652.x

    Article  Google Scholar 

  56. Balouch SU, Forth JP, Granju JL (2010) Surface corrosion of steel fibre reinforced concrete. Cem Concr Res 40(3):410–414. https://doi.org/10.1016/j.cemconres.2009.10.001

    Article  CAS  Google Scholar 

  57. Pellegrino C, Gaddo V (2009) Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cement Concr Compos 31(9):663–671. https://doi.org/10.1016/j.cemconcomp.2009.05.006

    Article  CAS  Google Scholar 

  58. Sim J, Park C, Moon DY (2005) Characteristics of basalt fibre as a strengthening material for concrete structures. Compos B Eng 36(6–7):504–512. https://doi.org/10.1016/j.compositesb.2005.02.002

    Article  CAS  Google Scholar 

  59. Nataraja MC, Nagaraj TS, Basavaraja SB (2005) Reproportioning of steel fibre reinforced concrete mixes and their impact resistance. Cem Concr Res 35(12):2350–2359. https://doi.org/10.1016/j.cemconres.2005.06.011

    Article  CAS  Google Scholar 

  60. Barros JAO, Cunha VMCF, Ribeiro AF, Antunes JAB (2005) Post-cracking behaviour of steel fibre reinforced concrete. Mater Struct/Materiaux et Construct 38(275):47–56. https://doi.org/10.1617/14058

    Article  CAS  Google Scholar 

  61. Lee MK, Barr BIG (2004) An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cement Concr Compos 26(4):299–305. https://doi.org/10.1016/S0958-9465(02)00139-7

    Article  CAS  Google Scholar 

  62. Qian CX, Stroeven P (2000) Development of hybrid polypropylene-steel fibre-reinforced concrete. Cement Concr Res 30:63

    Article  CAS  Google Scholar 

  63. Murmu M, Ranjan Mohanta N, Bapure N (2023) Study on the fresh and hardened properties of concrete with steel slag as partial replacement for natural aggregates. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.151

    Article  Google Scholar 

  64. Altalabani D, Bzeni DKH, Linsel S (2020) Mechanical properties and load deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119084

    Article  Google Scholar 

  65. Mohebi ZH, Bahnamiri AB, Dehestani M (2019) Effect of polypropylene fibers on bond performance of reinforcing bars in high strength concrete. Constr Build Mater 215:401–409. https://doi.org/10.1016/j.conbuildmat.2019.04.230

    Article  CAS  Google Scholar 

  66. Fallah S, Nematzadeh M (2017) Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr Build Mater 132:170–187. https://doi.org/10.1016/j.conbuildmat.2016.11.100

    Article  CAS  Google Scholar 

  67. Wu C, He X, Zhao X, He L, Song Y, Zhang X (2022) Effect of fiber content on mechanical properties and microstructural characteristics of alkali resistant glass fiber reinforced concrete. Adv Mater Sci Eng. https://doi.org/10.1155/2022/1531570

    Article  Google Scholar 

  68. Ali B, Qureshi LA, Khan SU (2020) Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120820

    Article  Google Scholar 

  69. Yang S, Yu M, Dong K, Yang Y (2020) Properties of alkali-resistant glass fiber reinforced coral aggregate concrete. Materials. https://doi.org/10.3390/MA13163450

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ali B, Qureshi LA, Raza A, Nawaz MA, Rehman SU, Rashid MU (2019) Influence of glass fibers on mechanical properties of concrete with recycled coarse aggregates. Civil Eng J Iran 5(5):1007–1019. https://doi.org/10.28991/cej-2019-03091307

    Article  Google Scholar 

  71. Rooholamini H, Sedghi R, Ghobadipour B, Adresi M (2019) Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete. Constr Build Mater 211:88–98. https://doi.org/10.1016/j.conbuildmat.2019.03.223

    Article  Google Scholar 

  72. Sun X, Gao Z, Cao P, Zhou C (2019) Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete. Constr Build Mater 202:58–72. https://doi.org/10.1016/j.conbuildmat.2019.01.018

    Article  Google Scholar 

  73. Algin Z, Ozen M (2018) The properties of chopped basalt fibre reinforced self-compacting concrete. Constr Build Mater 186:678–685. https://doi.org/10.1016/j.conbuildmat.2018.07.089

    Article  Google Scholar 

  74. Kizilkanat AB, Kabay N, Akyüncü V, Chowdhury S, Akça AH (2015) Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr Build Mater 100:218–224. https://doi.org/10.1016/j.conbuildmat.2015.10.006

    Article  Google Scholar 

  75. Zhu H, Li C, Gao D, Yang L, Cheng S (2019) Study on mechanical properties and strength relation between cube and cylinder specimens of steel fiber reinforced concrete. Adv Mech Eng. https://doi.org/10.1177/1687814019842423

    Article  Google Scholar 

  76. Iqbal S, Ali I, Room S, Khan SA, Ali A (2019) Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Mater Struct/Materiaux et Constr. https://doi.org/10.1617/s11527-019-1357-6

    Article  Google Scholar 

  77. Abbass W, Khan MI, Mourad S (2018) Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Constr Build Mater 168:556–569. https://doi.org/10.1016/j.conbuildmat.2018.02.164

    Article  Google Scholar 

  78. Khan S, Ali A, Bibi T, Wadood F (2024) Mechanical investigations of the durability performance of sustainable self-compacting and anti-spalling composite mortars. J Build Eng 82:108319. https://doi.org/10.1016/j.jobe.2023.108319

    Article  Google Scholar 

  79. IS 383: 2016, Coarse and Fine Aggregate for Concrete, Bureau of Indian Standards, India

  80. IS 4031: 2005 Method of physical tests for hydraulic cement, Bureau of Indian Standards, India

  81. IS 2386: 2002, Methods of test for aggregates for concrete, Bureau of Indian Standards, India

  82. IS 10262: 2019, Concrete mix proportioning- guidelines, Bureau of Indian Standards, India

  83. IS 516: 2021, Method of tests for strength of concrete, Bureau of Indian Standards, India

  84. ASTM C642–21: Standard test method for density, absorption, and voids in hardened concrete

  85. ASTM C1876–19: Standard test method for bulk electrical resistivity or bulk conductivity of concrete

  86. IS 516: 2018, Hardened concrete methods of test, part 5 Non-destructive testing of concrete, section 1 ultrasonic pulse velocity testing, Bureau of Indian Standards, India

  87. IS 516: 2021, Hardened concrete methods of test, part 2 properties of hardened concrete other than strength, section 4 determination of the carbonation resistance by accelerated carbonation method, Bureau of Indian Standards, India

  88. IS 1199: 2018, Methods of sampling and analysis of concrete, Bureau of Indian Standards, India

  89. ASTM C138 / C138M Standard test method for density (unit weight), yield, and Air content (gravimetric) of concrete

  90. Tarbay EW, Azam AM, El-Badawy SM (2019) Waste materials and by-products as mineral fillers in asphalt mixtures. Innov Infrastr Solut. https://doi.org/10.1007/s41062-018-0190-z

    Article  Google Scholar 

  91. Al-Alwan AAK, Al-Bazoon M, Mussa IF, Alalwan HA, Hatem Shadhar M, Mohammed MM, Mohammed MF (2022) The impact of using rice husk ash as a replacement material in concrete: an experimental study. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2022.03.002

    Article  Google Scholar 

  92. Bibi T, Ali A, Zhang J, Naseer A, Ul Islam S (2020) Microscopic analysis of the deleterious effects of ammonium nitrate fertilizer on concrete. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.118716

    Article  Google Scholar 

  93. Zheng Y, Wu X, He G, Shang Q, Xu J, Sun Y (2018) Mechanical properties of steel fiber-reinforced concrete by vibratory mixing technology. Adv Civil Eng. https://doi.org/10.1155/2018/9025715

    Article  Google Scholar 

  94. Song PS, Hwang S (2004) Mechanical properties of high-strength steel fiber-reinforced concrete. Constr Build Mater 18(9):669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027

    Article  Google Scholar 

  95. Thomas J, Ramaswamy A (2007) Mechanical properties of steel fiber-reinforced concrete. J Mater Civ Eng 19(5):385–392. https://doi.org/10.1061/ASCE0899-1561200719:5385

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Jagannath Rath (GM Marketing), Mr. Manoj Kumar (GM M&BP), and Mr. Dipankar Roy (GM MRD) of Bhilai Steel Plant (BSP), Chhattisgarh, for arranging LD slag for my research work. The authors also want to thank the Ministry of Education of India and the Department of Civil Engineering at NIT Raipur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihar Ranjan Mohanta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanta, N.R., Murmu, M. Comparative study on the effect of incorporation of Linz-Donawitz slag as coarse aggregate in concrete reinforced with different fibers. Innov. Infrastruct. Solut. 9, 76 (2024). https://doi.org/10.1007/s41062-024-01387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01387-8

Keywords

Navigation