Skip to main content
Log in

Chloride detection in concrete using wireless fidelity (Wi-Fi) signal

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Corrosion is causing the gradual deterioration of a significant quantity of existing structures in many nations around the world. In reinforced concrete structures (RCS), chloride corrosion occurs more rapidly than carbonation corrosion. When affected, RCS must go through a repair or retrofitting process for further functioning. Therefore, early detection of corrosion attacks can save both the cost of repair and the expected/remaining service life of the structure. It is feasible to assess whether the structures are already corroding by measuring the level of chloride. This study reports a non-destructive method for detecting the chloride in concrete by using wireless fidelity (Wi-Fi) signal. A setup is developed with two Wi-Fi adapters and Wi-Fi analyzer software to detect the various amounts of chloride in concrete samples by means of attenuation (dB). Three different grades and thicknesses of concrete samples were prepared with known NaCl percentages of 0%, 5%, 10%, and 15%, and their attenuation values obtained by Wi-Fi signals were analyzed. An artificial neural network is employed to predict the actual NaCl with the model or predicted NaCl data. The result illustrated a measurable influence of the concrete grades, sample thickness, and percentages of NaCl on the attenuation values. Electrical resistivity, water absorption, and microstructures of the samples were investigated and correlated with the attenuation values. Successful use of this non-destructive technique can have a significant contribution in assessing the durability of many existing RCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding authors on request.

References

  1. PAM Basheer SE Chidiact AE Long 1996 Predictive models for deterioration of concrete structures Constr Build Mater 10 1 27 37 https://doi.org/10.1016/0950-0618(95)00092-5

    Article  Google Scholar 

  2. SS Rizvi S Akhtar SK Verma 2017 Carbonation induced deterioration of concrete structures Indian Concr J 65 70

    Google Scholar 

  3. M Alexander H Beushausen 2019 Durability, service life prediction, and modelling for reinforced concrete structures–review and critique Cem Concr Res 122 17 29 https://doi.org/10.1016/j.cemconres.2019.04.018

    Article  CAS  Google Scholar 

  4. Mehta PK (1991) Concrete durability-fifty years progress. In: Proceedings of the 2nd international conference on concrete durability, Montreal, QC, Canada, 49:132

  5. RE Melchers CQ Li 2006 Phenomenological modeling of reinforcement corrosion in marine environments ACI Mater J 103 1 25

    CAS  Google Scholar 

  6. GK Glass NR Buenfeld 2000 Chloride-induced corrosion of steel in concrete Prog Struct Mat Eng 2 4 448 458 https://doi.org/10.1002/pse.54

    Article  Google Scholar 

  7. MK Kassir M Ghosn 2002 Chloride-induced corrosion of reinforced concrete bridge decks Cem Concr Res 32 1 139 143 https://doi.org/10.1016/S0008-8846(01)00644-5

    Article  CAS  Google Scholar 

  8. E Güneyisi M Gesoğlu F Karaboğa K Mermerdaş 2013 Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin Compos B Eng 45 1 1288 1295 https://doi.org/10.1016/j.compositesb.2012.09.085

    Article  CAS  Google Scholar 

  9. X Shi N Xie K Fortune J Gong 2012 Durability of steel reinforced concrete in chloride environments: an overview Constr Build Mater 30 125 138 https://doi.org/10.1016/j.conbuildmat.2011.12.038

    Article  Google Scholar 

  10. MS Ribeiro J Lage A Gonçalves 2019 Chloride assessment in structures. Influences of sampling and test location Cem Concr Res 117 82 90 https://doi.org/10.1016/j.cemconres.2019.01.002

    Article  CAS  Google Scholar 

  11. IL Al-Qadi RH Haddad SM Riad 1997 Detection of chlorides in concrete using low radio frequencies J Mater Civ Eng 9 1 29 34 https://doi.org/10.1061/(ASCE)0899-1561(1997)9:1(29)

    Article  CAS  Google Scholar 

  12. RB Polder 2001 Test methods for onsite measurement of resistivity of concrete—a RILEM TC-154 technical recommendation Constr Build Mater 15 2–3 125 131 https://doi.org/10.1016/S0950-0618(00)00061-1

    Article  Google Scholar 

  13. RB Polder WH Peelen 2002 Characterization of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity Cement Concr Compos 24 5 427 435 https://doi.org/10.1016/S0958-9465(01)00074-9

    Article  CAS  Google Scholar 

  14. PAM Basheer PRV Gilleece AE Long WJ Mc Carter 2002 Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration Cement Concr Compos 24 5 437 449 https://doi.org/10.1016/S0958-9465(01)00075-0

    Article  CAS  Google Scholar 

  15. SW James RP Tatam 2003 Optical fibre long-period grating sensors: characteristics and application Meas Sci Technol 14 5 R49 https://doi.org/10.1088/0957-0233/14/5/201

    Article  CAS  ADS  Google Scholar 

  16. AE Ramírez-Ortíz F Castellanos PFDJ Cano-Barrita 2018 Ultrasonic detection of chloride ions and chloride binding in Portland cement pastes Int J Concr Struct Mater 12 1 1 12 https://doi.org/10.1186/s40069-018-0254-7

    Article  CAS  Google Scholar 

  17. B Elsener L Zimmermann H Böhni 2003 Non destructive determination of the free chloride content in cement based materials Mater Corros 54 6 440 446 https://doi.org/10.1002/maco.200390095

    Article  CAS  Google Scholar 

  18. X Lu 1997 Application of the Nernst-Einstein equation to concrete Cem Concr Res 27 2 293 302 https://doi.org/10.1016/S0008-8846(96)00200-1

    Article  CAS  Google Scholar 

  19. EI Nadelman KE Kurtis 2014 A resistivity-based approach to optimizing concrete performance Concr Int 36 5 50 54

    Google Scholar 

  20. PA Claisse 2014 Letter: using electrical tests as durability indicators Concr Int 36 10 17

    Google Scholar 

  21. AASHTO TP 95 (2014) Standard test method for surface resistivity of concrete’s ability to resist chloride ion penetration. American Association of State Highway and Transportation Officials, Washington, DC, USA

  22. ASTM C1760–12 (2012) Standard test method for bulk electrical conductivity of hardened concrete. ASTM International, West Conshohocken, PA, USA

  23. H Layssi P Ghods AR Alizadeh M Salehi 2015 Electrical resistivity of concrete Concrete int 37 5 41 46

    Google Scholar 

  24. K Hornbostel CK Larsen MR Geiker 2013 Relationship between concrete resistivity and corrosion rate–A literature review Cement Concr Compos 39 60 72 https://doi.org/10.1016/j.cemconcomp.2013.03.019

    Article  CAS  Google Scholar 

  25. M Hosseinzadeh SS Mousavi A Hosseinzadeh M Dehestani 2023 An efficient machine learning approach for predicting concrete chloride resistance using a comprehensive dataset Sci Rep 13 1 15024 https://doi.org/10.1038/s41598-023-42270-3

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  26. WZ Taffese L Espinosa-Leal 2022 A machine learning method for predicting the chloride migration coefficient of concrete Constr Build Mater 348 128566 https://doi.org/10.1016/j.conbuildmat.2022.128566

    Article  CAS  Google Scholar 

  27. J Qiu Q Wu G Ding Y Xu S Feng 2016 A survey of machine learning for big data processing EURASIP J Adv Signal Process 2016 1 16 https://doi.org/10.1186/s13634-016-0355-x

    Article  Google Scholar 

  28. R Cai T Han W Liao J Huang D Li A Kumar H Ma 2020 Prediction of surface chloride concentration of marine concrete using ensemble machine learning Cem Concr Res 136 106164 https://doi.org/10.1016/j.cemconres.2020.106164

    Article  CAS  Google Scholar 

  29. A Ahmad F Farooq KA Ostrowski K Śliwa-Wieczorek S Czarnecki 2021 Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material Materials 14 9 2297 https://doi.org/10.3390/ma14092297

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  30. Y Wang K Wu LM Ni 2016 Wifall: device-free fall detection by wireless networks IEEE Trans Mob Comput 6 2 581 594 https://doi.org/10.1109/TMC.2016.2557792

    Article  Google Scholar 

  31. N Patwari J Wilson S Ananthanarayanan SK Kasera DR Westenskow 2013 Monitoring breathing via signal strength in wireless networks IEEE Trans Mob Comput 13 8 1774 1786 https://doi.org/10.1109/TMC.2013.117

    Article  Google Scholar 

  32. Wang X, Yang C, Mao S (2017) PhaseBeat: exploiting CSI phase data for vital sign monitoring with commodity Wi-Fi devices. In: 2017 IEEE 37th international conference on distributed computing systems (ICDCS), Atlanta, GA, USA, pp 1230–1239

  33. Hanif A, Chughtai MS, Qureshi AA, Aleem A, Munir F, Tahir M, Uppal M (2018) Non-obtrusive detection of concealed metallic objects using commodity WiFi radios. In: 2018 IEEE global communications conference (GLOBECOM), Abu Dhabi, UAE, pp 1–6

  34. Wu K (2016) Wi-metal: detecting metal by using wireless networks. In: 2016 IEEE international conference on communications (ICC), Kuala Lumpur, Malaysia, pp 1–6

  35. Won M, Zhang S, Son SH (2017) WiTraffic: low-cost and non-intrusive traffic monitoring system using WiFi. In: 2017 26th international conference on computer communication and networks (ICCCN), Vancouver, BC, Canada, pp 1–9

  36. X Zhang R Ruby L Jinfeng Long ZM Wang W Kaishun 2017 WiHumidity: a novel CSI-based humidity measurement system M Qiu Eds Smart Computing and Communication Springer International Publishing Cham 537 547 https://doi.org/10.1007/978-3-319-52015-5_55

    Chapter  Google Scholar 

  37. Wang X, Yu Z, Mao S (2018) DeepML: deep LSTM for indoor localization with smartphone magnetic and light sensors. In: 2018 IEEE international conference on communications (ICC), Kansas City, MO, USA, pp 1–6

  38. J Zabielski P Srokosz 2020 Monitoring of structural safety of buildings using wireless network of mems sensors Buildings 10 11 193 https://doi.org/10.3390/buildings10110193

    Article  Google Scholar 

  39. MA Gacem AS Zakaria MH Ismail U Tariq S Yehia 2022 Measurement of construction materials properties using Wi-Fi and convolutional neural networks IEEE Access 10 2022 126100 126116

    Article  Google Scholar 

  40. A Aileen AD Suwardi F Prawiranata 2021 WiFi signal strength degradation over different building materials Eng Math Comput Sci (EMACS) J 3 3 109 113 https://doi.org/10.21512/emacsjournal.v3i3.7455

    Article  Google Scholar 

  41. JH Jo UK Lee JH Jeong SS Lee 2022 Comparatively testing concrete permeability for wireless communications of a pipe-cleaning Robot Int J Mech Eng 7 0974 5823

    Google Scholar 

  42. M Faraday HJ Fisher 2001 Faraday’s experimental researches in electricity: Guide to a first reading Green Lion Press New Mexico

    Google Scholar 

  43. Wang Q, Chen C, Lu N (2022) Electromagnetic and Ohmic heating analyses for Faraday shield in large and powerful RF ion sources. In: 7th international symposium on advances in electrical, electronics, and computer engineering 12294:291–295, Xishuangbanna, Yunan, China

  44. GV Gkoutos R Hoehndorf 2012 Ontology-based cross-species integration and analysis of Saccharomyces cerevisiae phenotypes J Biomed Semant 3 2 6 https://doi.org/10.1186/2041-1480-3-S2-S6

    Article  Google Scholar 

  45. ASTM C642–21 (1996) Standard test method for density, absorption, and voids in hardened concrete. ASTM International: West Conshohocken, PA, USA

  46. P Azarsa R Gupta 2017 Electrical resistivity of concrete for durability evaluation: a review Adv Mater Sci Eng 2017 8453095 https://doi.org/10.1155/2017/8453095

    Article  CAS  Google Scholar 

  47. ASTM C1202–12 (2012) Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration, ASTM International, West Conshohocken, PA, USA

  48. AASHTO T 277 (2007) Standard test method for electrical indication of concrete’s ability to resist chloride. American Association of State Highway and Transportation Officials, Washington, DC, USA

  49. H Naderpour AH Rafiean P Fakharian 2018 Compressive strength prediction of environmentally friendly concrete using artificial neural networks J Build Eng 16 213 219 https://doi.org/10.1016/j.jobe.2018.01.007

    Article  Google Scholar 

  50. MT Sattari A Farkhondeh J Patrick Abraham 2018 Estimation of sodium adsorption ratio indicator using data mining methods: a case study in Urmia Lake basin, Iran Environ Sci Pollut Res 25 4776 4786 https://doi.org/10.1007/s11356-017-0844-y

    Article  CAS  Google Scholar 

  51. A Dimri JK Varshney VK Verma S Gupta 2015 A review on strength of concrete in seawater Int J Eng Res Technol 4 3 844 847

    Google Scholar 

  52. M Jamil MK Hassan HMA Al-Mattarneh MFM Zain 2013 Concrete dielectric properties investigation using microwave non-destructive techniques Mater Struct 46 77 87 https://doi.org/10.1617/s11527-012-9886-2

    Article  CAS  Google Scholar 

  53. H Al-Mattarneh 2016 Determination of chloride content in concrete using near-and far-field microwave non-destructive methods Corros Sci 105 133 140 https://doi.org/10.1016/j.corsci.2016.01.010

    Article  CAS  Google Scholar 

  54. M Fares G Villain S Bonnet SP Lopes B Thauvin M Thiery 2018 Determining chloride content profiles in concrete using an electrical resistivity tomography device Cement Concr Compos 94 315 326 https://doi.org/10.1016/j.cemconcomp.2018.08.001

    Article  CAS  Google Scholar 

  55. ZM Sbartaï S Laurens J Rhazi JP Balayssac G Arliguie 2007 Using radar direct wave for concrete condition assessment: correlation with electrical resistivity J Appl Geophys 62 4 361 374 https://doi.org/10.1016/j.jappgeo.2007.02.003

    Article  Google Scholar 

  56. M Saleem M Shameem SE Hussain M Maslehuddin 1996 Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete Constr Build Mater 10 3 209 214 https://doi.org/10.1016/0950-0618(95)00078-X

    Article  Google Scholar 

  57. W Morris A Vico M Vázquez 2004 Chloride induced corrosion of reinforcing steel evaluated by concrete resistivity measurements Electrochim Acta 49 25 4447 4453 https://doi.org/10.1016/j.electacta.2004.05.001

    Article  CAS  Google Scholar 

  58. C Andrade C Alonso J Sarria 1998 Influencia de la humedadrelativa y la temperaturaen las velocidades de corrosión de estructuras de hormigón Influence of relative humidity and temperature on-site corrosion rates Mater Constr 48 5 17

    Article  CAS  Google Scholar 

  59. S Ahmad 2014 An experimental study on correlation between concrete resistivity and reinforcement corrosion rate Anti-Corrosion Methods and Materials 61 3 158 165 https://doi.org/10.1108/ACMM-07-2013-1285

    Article  CAS  Google Scholar 

  60. B Yu J Liu Z Chen 2017 Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity Constr Build Mater 138 101 113 https://doi.org/10.1016/j.conbuildmat.2017.01.100

    Article  CAS  Google Scholar 

  61. KPV Robles JJ Yee SH Kee 2022 Electrical resistivity measurements for non-destructive evaluation of chloride-induced deterioration of reinforced concrete—A review Materials 15 8 2725 https://doi.org/10.3390/ma15082725

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  62. JP Gonçalves LM Tavares RD Toledo Filho EMR Fairbairn ER Cunha 2007 Comparison of natural and manufactured fine aggregates in cement mortars Cem Concr Res 37 6 924 932 https://doi.org/10.1016/j.cemconres.2007.03.009

    Article  CAS  Google Scholar 

  63. A Kronlöf 1994 Effect of very fine aggregate on concrete strength Mater Struct 27 15 25 https://doi.org/10.1007/BF02472816

    Article  Google Scholar 

  64. Y Tian J Jiang S Wang T Yang L Qi J Geng 2021 The mechanical and interfacial properties of concrete prepared by recycled aggregates with chloride corrosion media Constr Build Mater 282 122653

    Article  CAS  Google Scholar 

  65. D Su J Pang X Huang 2021 Experimental study on the influence of rubber content on chloride salt corrosion resistance performance of concrete Materials 14 16 4706

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  66. M Harilal DK Kamde S Uthaman RP George RG Pillai J Philip SK Albert 2021 The chloride-induced corrosion of a fly ash concrete with nanoparticles and corrosion inhibitor Constr Build Mater 274 122097

    Article  CAS  Google Scholar 

  67. AK Suryavanshi JD Scantlebury SB Lyon 1998 Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride Cement Concr Compos 20 4 263 281 https://doi.org/10.1016/S0958-9465(98)00018-3

    Article  CAS  Google Scholar 

  68. AM Tahwia GM Elgendy M Amin 2021 Durability and microstructure of eco-efficient ultra-high-performance concrete Constr Build Mater 303 124491 https://doi.org/10.1016/j.conbuildmat.2021.124491

    Article  CAS  Google Scholar 

  69. M Amin BA Tayeh IS Agwa 2020 Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete J Clean Prod 273 123073 https://doi.org/10.1016/j.jclepro.2020.123073

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suvash Chandra Paul or Adewumi John Babafemi.

Ethics declarations

Conflict of interests

No competing interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication. The authors declare that the work described was original research that has not been published previously and is not under consideration for publication elsewhere, in whole or in part.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.C., Al Mamun, F., Hasan, N.M. et al. Chloride detection in concrete using wireless fidelity (Wi-Fi) signal. Innov. Infrastruct. Solut. 9, 60 (2024). https://doi.org/10.1007/s41062-024-01378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01378-9

Keywords

Navigation