Skip to main content
Log in

A review on 3D printable cementitious material containing copper and iron ore tailings: material characterization, activation methods, engineering properties, durability, and microstructure behavior

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

3D concrete printing (3DCP) is an advanced technology that combines digital technologies with new materials science insights to allow free-form building without using formwork. This 3DCP has attracted much attention in recent years due to its potential benefits, including reducing construction costs by eliminating the formwork, less construction waste, geometric freedom, less onsite construction time, risk reduction, robustness, and better productivity. However, the researchers have challenges in developing the printing materials for 3DCP applications. There is a substantial difference in the composition and performance of 3DCP and conventional concrete. In recent decades, CO2 emissions from concrete manufacturers have accounted for 5–8% of global total CO2 emissions. Moreover, the amount of industrial waste created increases year after year. Iron ore tailings (IOT) and copper ore tailings (COT) have been a matter of concern for researchers in recent years as a type of building material. This paper primarily examines material and microstructural characterization, activation methods, engineering properties durability, and microstructure behavior of cementitious printable material containing copper and iron ore tailings. It critically discusses the performance of IOT and COT and the impact of partial replacement on the performance of various aspects of printable concrete materials containing IOT and COT. It also highlights the future research directions on COT and IOT. The findings show that the copper ore tailings and iron ore tailings if incorporated in the required amount as supplementary cementitious material will reduce the mining waste as well as develop the sustainable cementitious material with enhanced engineering properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Lim S, Buswell RA, Le TT, Austin SA, Gibb AGF, Thorpe T (2012) Developments in construction-scale additive manufacturing processes. Autom Constr 21:262–268. https://doi.org/10.1016/j.autcon.2011.06.010

    Article  Google Scholar 

  2. Sanjayan JG, Nematollahi B (2019) 3D Concrete Printing for Construction Applications. Elsevier, Amsterdam

    Book  Google Scholar 

  3. Zhang Y, Zhang Y, Liu G, Yang Y, Wu M, Pang B (2018) Fresh properties of a novel 3D printing concrete ink. Constr Build Mater 174:263–271. https://doi.org/10.1016/j.conbuildmat.2018.04.115

    Article  CAS  Google Scholar 

  4. Keita E, Bessaies-Bey H, Zuo W, Belin P, Roussel N (2019) Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cem Concr Res 123:105787. https://doi.org/10.1016/j.cemconres.2019.105787

    Article  CAS  Google Scholar 

  5. Tay YWD, Qian Y, Tan MJ (2019) Printability region for 3D concrete printing using slump and slump flow test. Compos Part B Eng 174:106968. https://doi.org/10.1016/j.compositesb.2019.106968

    Article  CAS  Google Scholar 

  6. Khan MA (2020) Mix suitable for concrete 3D printing: a review. Mater Today Proc 32:831–837. https://doi.org/10.1016/j.matpr.2020.03.825

    Article  CAS  Google Scholar 

  7. Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf 30:100894. https://doi.org/10.1016/j.addma.2019.100894

    Article  Google Scholar 

  8. Tay YWD, Panda B, Paul SC, Noor Mohamed NA, Tan MJ, Leong KF (2017) 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp 12:261–276. https://doi.org/10.1080/17452759.2017.1326724

    Article  Google Scholar 

  9. Hager I, Golonka A, Putanowicz R (2016) 3D printing of buildings and building components as the future of sustainable construction? Procedia Eng 151:292–299. https://doi.org/10.1016/j.proeng.2016.07.357

    Article  Google Scholar 

  10. Qaidi S, Yahia A, Tayeh BA, Unis H, Faraj R, Mohammed A (2022) 3D printed geopolymer composites: a review. Mater Today Sustain 20:100240. https://doi.org/10.1016/j.mtsust.2022.100240

    Article  Google Scholar 

  11. Ma G, Li Z, Wang L (2018) Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater 162:613–627. https://doi.org/10.1016/j.conbuildmat.2017.12.051

    Article  CAS  Google Scholar 

  12. Khoshnevis B (2004) Automated construction by contour crafting-related robotics and information technologies. Autom Constr 13:5–19. https://doi.org/10.1016/j.autcon.2003.08.012

    Article  Google Scholar 

  13. Li Z, Wang L, Ma G (2019) Method for the enhancement of buildability and bending resistance of three-dimensional-printable tailing mortar. Elsevier, Amsterdam

    Book  Google Scholar 

  14. Kazemian A, Yuan X, Cochran E, Khoshnevis B (2017) Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater 145:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015

    Article  CAS  Google Scholar 

  15. Paul SC, van Zijl GPAG, Gibson I (2018) A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyp J 24:784–798. https://doi.org/10.1108/RPJ-09-2016-0154

    Article  Google Scholar 

  16. Lowke D, Dini E, Perrot A, Weger D, Gehlen C, Dillenburger B (2018) Particle-bed 3D printing in concrete construction–possibilities and challenges. Cem Concr Res 112:50–65. https://doi.org/10.1016/j.cemconres.2018.05.018

    Article  CAS  Google Scholar 

  17. Chen Y, Veer F, Copuroglu O (2017) A critical review of 3D concrete printing as a low CO2 concrete approach. Heron 62(3):167–194. https://doi.org/10.13140/rg.2.2.12323.71205

    Article  Google Scholar 

  18. El-Sayegh S, Romdhane L, Manjikian S (2020) A critical review of 3D printing in construction: benefits, challenges, and risks. Arch Civ Mech Eng 20:1–25. https://doi.org/10.1007/s43452-020-00038-w

    Article  Google Scholar 

  19. Mechtcherine V, Bos FP, Perrot A, da Silva WRL, Nerella VN, Fataei S, Wolfs RJM, Sonebi M, Roussel N (2020) Extrusion-based additive manufacturing with cement-based materials–production steps, processes, and their underlying physics: a review. Cem Concr Res 132:106037. https://doi.org/10.1016/j.cemconres.2020.106037

    Article  CAS  Google Scholar 

  20. Mohan MK, Rahul AV, De Schutter G, Van Tittelboom K (2021) Extrusion-based concrete 3D printing from a material perspective: a state-of-the-art review. Cem Concr Compos 115:103855. https://doi.org/10.1016/j.cemconcomp.2020.103855

    Article  CAS  Google Scholar 

  21. Wolfs RJM, Bos FP, Salet TAM (2019) Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cem Concr Res 119:132–140. https://doi.org/10.1016/j.cemconres.2019.02.017

    Article  CAS  Google Scholar 

  22. Wang R, Shi Q, Li Y, Cao Z, Si Z (2021) A critical review on the use of copper slag (CS) as a substitute constituent in concrete. Constr Build Mater 292:123371. https://doi.org/10.1016/j.conbuildmat.2021.123371

    Article  CAS  Google Scholar 

  23. Jacquet Y, Perrot A, Picandet V (2021) Assessment of asymmetrical rheological behavior of cementitious material for 3D printing application. Cem Concr Res 140:106305. https://doi.org/10.1016/j.cemconres.2020.106305

    Article  CAS  Google Scholar 

  24. Nasser Eddine Z, Barraj F, Khatib J, Elkordi A (2023) From waste to resource: utilizing municipal solid waste incineration bottom ash and recycled rubber in pervious concrete pavement. Innov Infrastruct Solut 8:1–17. https://doi.org/10.1007/s41062-023-01289-1

    Article  Google Scholar 

  25. Mashaly AA, Mahdy MG, Elemam WE (2023) Optimal design and characteristics of sustainable eco-friendly ultra-high-performance concrete. Innov Infrastruct Solut 8:1–15. https://doi.org/10.1007/s41062-023-01277-5

    Article  Google Scholar 

  26. Abd Ellatief M, Abadel AA, Federowicz K, Abd Elrahman M (2023) Development of ultra-high-performance concrete with low environmental impact integrated with metakaolin and industrial wastes. Case Stud Constr Mater 18:e01724. https://doi.org/10.1016/j.cscm.2022.e01724

    Article  Google Scholar 

  27. Abdellatief M, Elrahman MA, Elgendy G, Bassioni G, Tahwia AM (2023) Response surface methodology-based modelling and optimization of sustainable UHPC containing ultrafine fly ash and metakaolin. Constr Build Mater 388:131696. https://doi.org/10.1016/j.conbuildmat.2023.131696

    Article  CAS  Google Scholar 

  28. Abdellatief M, Elemam WE, Alanazi H, Tahwia AM (2023) Production and optimization of sustainable cement brick incorporating clay brick wastes using response surface method. Ceram Int 49:9395–9411. https://doi.org/10.1016/j.ceramint.2022.11.144

    Article  CAS  Google Scholar 

  29. Umara A, Warid M, Ahmad Y, Mirza J (2016) Evaluation of iron ore tailings as replacement for fine aggregate in concrete. Constr Build Mater 120:72–79. https://doi.org/10.1016/j.conbuildmat.2016.05.095

    Article  CAS  Google Scholar 

  30. Li X, Zhang N, Yuan J, Wang X, Zhang Y, Chen F, Zhang Y (2020) Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings. Constr Build Mater 249:118779. https://doi.org/10.1016/j.conbuildmat.2020.118779

    Article  CAS  Google Scholar 

  31. He X, Yuhua Z, Qaidi S, Isleem HF, Zaid O, Althoey F, Ahmad J (2022) Mine tailings-based geopolymers: a comprehensive review. Ceram Int 48:24192–24212. https://doi.org/10.1016/j.ceramint.2022.05.345

    Article  CAS  Google Scholar 

  32. Tahwia AM, Abd Ellatief M, Heneigel AM, Abd Elrahman M (2022) Characteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceram Int 48:19662–19674. https://doi.org/10.1016/j.ceramint.2022.03.103

    Article  CAS  Google Scholar 

  33. Abd Ellatief M, Abadel AA, Federowicz K, Abd Elrahman M (2023) Mechanical properties, high temperature resistance and microstructure of eco-friendly ultra-high performance geopolymer concrete: role of ceramic waste addition. Constr Build Mater 401:132677. https://doi.org/10.1016/j.conbuildmat.2023.132677

    Article  CAS  Google Scholar 

  34. Mansi A, Sor NH, Hilal N, Qaidi SMA (2022) The impact of nano clay on normal and high-performance concrete characteristics: a review. IOP Conf Ser Earth Environ Sci. 961:012085. https://doi.org/10.1088/1755-1315/961/1/012085

    Article  Google Scholar 

  35. Zhao J, Ni K, Su Y, Shi Y (2021) An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties. Constr Build Mater 286:122968. https://doi.org/10.1016/j.conbuildmat.2021.122968

    Article  CAS  Google Scholar 

  36. Yao G, Wang Q, Wang Z, Wang J, Lyu X (2020) Activation of hydration properties of iron ore tailings and their application as supplementary cementitious materials in cement. Powder Technol 360:863–871. https://doi.org/10.1016/j.powtec.2019.11.002

    Article  CAS  Google Scholar 

  37. Zhang N, Tang B, Liu X (2021) Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete. Constr Build Mater 288:123022. https://doi.org/10.1016/j.conbuildmat.2021.123022

    Article  Google Scholar 

  38. Hk T, Hossiney N (2022) A short review on environmental impacts and application of iron ore tailings in development of sustainable eco-friendly bricks. Mater Today Proc 61:327–331. https://doi.org/10.1016/j.matpr.2021.09.522

    Article  CAS  Google Scholar 

  39. Mendes Protasio FN, Ribeiro de Avillez R, Letichevsky S, de Andrade Silva F (2021) The use of iron ore tailings obtained from the Germano dam in the production of a sustainable concrete. J Clean Prod 278:123929. https://doi.org/10.1016/j.jclepro.2020.123929

    Article  CAS  Google Scholar 

  40. Luo L, Li K, Weng F, Liu C, Yang S (2020) Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings. Constr Build Mater 232:117250. https://doi.org/10.1016/j.conbuildmat.2019.117250

    Article  CAS  Google Scholar 

  41. Xu F, Wang S, Li T, Liu B, Li B, Zhou Y (2021) Mechanical properties and pore structure of recycled aggregate concrete made with iron ore tailings and polypropylene fibers. J Build Eng 33:101572. https://doi.org/10.1016/j.jobe.2020.101572

    Article  Google Scholar 

  42. Kumar GP, Eswanth P (2019) A feasibility study on the mechanical properties of concrete with iron ore tailings (IOT). Int J Eng Sci Comput 9:24050–24054

    Google Scholar 

  43. Huang X, Ranade R, Ni W, Li VC (2013) Development of green engineered cementitious composites using iron ore tailings as aggregates. Construct Build Mater 44:757–764. https://doi.org/10.1016/j.conbuildmat.2013.03.088

    Article  Google Scholar 

  44. Yang M, Sun J, Dun C, Duan Y, Meng Z (2020) Cementitious activity optimization studies of iron tailings powder as a concrete admixture. Constr Build Mater 265:120760. https://doi.org/10.1016/j.conbuildmat.2020.120760

    Article  CAS  Google Scholar 

  45. Zhao B, Wang G, Wu B, Kong X (2023) A study on mechanical properties and permeability of steam-cured mortar with iron-copper tailings. Constr Build Mater 383:131372. https://doi.org/10.1016/j.conbuildmat.2023.131372

    Article  CAS  Google Scholar 

  46. Ugama TI, Ejeh SP, Amartey DY (2014) Effect of iron ore tailing on the properties of concrete. Civil Environ Res 6:7

    Google Scholar 

  47. Che TK, Pan BF, Sha D, Lu JL (2019) Utilization of iron tailings as fine aggregates in low-grade cement concrete pavement. IOP Conf Ser Mater Sci En. 479:012053. https://doi.org/10.1088/1757-899X/479/1/012053

    Article  CAS  Google Scholar 

  48. Mendes BC, Pedroti LG, Fontes MP, Ribeiro JC, Vieira CM, Pacheco AA, de Azevedo AR (2019) Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks. Constr Build Mater 227:116669. https://doi.org/10.1016/j.conbuildmat.2019.08.050

    Article  CAS  Google Scholar 

  49. Li N, Lv S, Wang W, Guo J, Jiang P, Liu Y (2020) Experimental investigations on the mechanical behavior of iron tailings powder with compound admixture of cement and nano-clay. Constr Build Mater 254:119259. https://doi.org/10.1016/j.conbuildmat.2020.119259

    Article  CAS  Google Scholar 

  50. Bangalore Chinnappa G, Karra RC (2020) Experimental and statistical evaluations of strength properties of concrete with iron ore tailings as fine aggregate. J Hazard Toxic Radioact Waste 24:04019038. https://doi.org/10.1061/(asce)hz.2153-5515.0000480

    Article  CAS  Google Scholar 

  51. Zhang W, Gu X, Qiu J, Liu J, Zhao Y, Li X (2020) Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete. Constr Build Mater 260:119917. https://doi.org/10.1016/j.conbuildmat.2020.119917

    Article  CAS  Google Scholar 

  52. Barati S, Tabatabaie Shourijeh P, Samani N, Asadi S (2020) Stabilization of iron ore tailings with cement and bentonite: a case study on Golgohar mine. Bull Eng Geol Environ 79:4151–4166. https://doi.org/10.1007/s10064-020-01843-6

    Article  CAS  Google Scholar 

  53. Zhao S, Fan J, Sun W (2014) Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete. Constr Build Mater 50:540–548. https://doi.org/10.1016/j.conbuildmat.2013.10.019

    Article  Google Scholar 

  54. Cheng Y, Huang F, Li W, Liu R, Li G, Wei J (2016) Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Constr Build Mater 118:164–170. https://doi.org/10.1016/j.conbuildmat.2016.05.020

    Article  ADS  CAS  Google Scholar 

  55. Liu SJ, Hu QQ, Zhao FQ, Chu XM (2014) Utilization of steel slag, iron tailings and fly ash as aggregates to prepare a polymer-modified waterproof mortar with a core-shell styrene-acrylic copolymer as the modifier. Constr Build Mater 72:15–22. https://doi.org/10.1016/j.conbuildmat.2014.09.016

    Article  Google Scholar 

  56. Gupta RC, Mehra P, Thomas BS (2017) Utilization of copper tailing in developing sustainable and durable concrete. J Mater Civil Eng 29:04016274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001813

    Article  Google Scholar 

  57. Thomas BS, Damare A, Gupta RC (2013) Strength and durability characteristics of copper tailing concrete. Constr Build Mater 48:894–900. https://doi.org/10.1016/j.conbuildmat.2013.07.075

    Article  Google Scholar 

  58. Esmaeili J, Aslani H, Onuaguluchi O (2020) Reuse potentials of copper mine tailings in mortar and concrete composites. J Mater Civ Eng 32:04020084. https://doi.org/10.1061/(asce)mt.1943-5533.0003145

    Article  CAS  Google Scholar 

  59. Ahmari S, Zhang L (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 29:323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048

    Article  Google Scholar 

  60. Dandautiya R, Singh AP (2019) Utilization potential of fly ash and copper tailings in concrete as partial replacement of cement along with life cycle assessment. Waste Manag 99:90–101. https://doi.org/10.1016/j.wasman.2019.08.036

    Article  PubMed  Google Scholar 

  61. Ince C, Derogar S, Gurkaya K, Ball RJ (2021) Properties, durability and cost efficiency of cement and hydrated lime mortars reusing copper mine tailings of lefke-xeros in cyprus. Constr Build Mater 268:121070. https://doi.org/10.1016/j.conbuildmat.2020.121070

    Article  CAS  Google Scholar 

  62. Barzegar Ghazi A, Jamshidi-Zanjani A, Nejati H (2022) Utilization of copper mine tailings as a partial substitute for cement in concrete construction. Constr Build Mater 317:125921. https://doi.org/10.1016/j.conbuildmat.2021.125921

    Article  CAS  Google Scholar 

  63. Huynh TP, Nguyen TM, Lam TK (2022) Utilization of high volumes of copper mine tailings in the production of fine-grained concrete. Mater Today Proc 65:543–548. https://doi.org/10.1016/j.matpr.2022.03.089

    Article  Google Scholar 

  64. Jian S, Gao W, Lv Y, Tan H, Li X, Li B, Huang W (2020) Potential utilization of copper tailings in the preparation of low heat cement clinker. Constr Build Mater 252:119130. https://doi.org/10.1016/j.conbuildmat.2020.119130

    Article  CAS  Google Scholar 

  65. Liu S, Wang L, Li Q, Song J (2020) Hydration properties of Portland cement-copper tailing powder composite binder. Constr Build Mater 251:118882. https://doi.org/10.1016/j.conbuildmat.2020.118882

    Article  CAS  Google Scholar 

  66. Vargas F, Alsina MA, Gaillard JF, Pasten P, Lopez M (2021) Copper entrapment and immobilization during cement hydration in concrete mixtures containing copper tailings. J Clean Prod 312:127547. https://doi.org/10.1016/j.jclepro.2021.127547

    Article  CAS  Google Scholar 

  67. Zhang Y, Shen W, Wu M, Shen B, Li M, Xu G, Zhang B, Ding Q, Chen X (2020) Experimental study on the utilization of copper tailing as micronized sand to prepare high performance concrete. Constr Build Mater 244:118312. https://doi.org/10.1016/j.conbuildmat.2020.118312

    Article  CAS  Google Scholar 

  68. Huang XY, Ni W, Cui WH, Wang ZJ, Zhu LP (2012) Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Constr Build Mater 27:1–5. https://doi.org/10.1016/j.conbuildmat.2011.08.034

    Article  Google Scholar 

  69. Yao G, Liu Q, Wang J, Wu P, Lyu X (2019) Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings. J Clean Prod 217:12–21. https://doi.org/10.1016/j.jclepro.2019.01.175

    Article  CAS  Google Scholar 

  70. Saedi A, Jamshidi-Zanjani A, Darban AK (2020) A review on different methods of activating tailings to improve their cementitious property as cemented paste and reusability. J Environ Manage 270:110881. https://doi.org/10.1016/j.jenvman.2020.110881

    Article  CAS  PubMed  Google Scholar 

  71. Kunt K, Dur F, Ertınmaz B, Yıldırım M, Derun EM, Pişkin S (2015) Utilization of boron waste as an additive for cement production. Celal Bayar Üniversitesi Fen Bilim Derg 11. https://doi.org/10.18466/cbujos.72356

  72. Allahverdi A, Maleki A, Mahinroosta M (2018) Chemical activation of slag-blended Portland cement. J Build Eng 18:76–83. https://doi.org/10.1016/j.jobe.2018.03.004

    Article  Google Scholar 

  73. Sobolev K (2005) Mechano-chemical modification of cement with high volumes of blast furnace slag. Cem Concr Compos 27:848–853. https://doi.org/10.1016/j.cemconcomp.2005.03.010

    Article  CAS  Google Scholar 

  74. Sahoo S (2016) A review of activation methods in fly ash and the comparison in context of concrete strength. J Basic App Eng Res 3:883–887

    ADS  Google Scholar 

  75. Ferreiro S, Frías M, Vigil De La Villa R, Sánchez De Rojas MI (2013) The influence of thermal activation of art paper sludge on the technical properties of blended Portland cements. Cem Concr Compos 37:136–142. https://doi.org/10.1016/j.cemconcomp.2012.11.005

    Article  CAS  Google Scholar 

  76. Yu L, Zhang Z, Huang X, Jiao B, Li D (2017) Enhancement experiment on cementitious activity of copper-mine tailings in a geopolymer system. Fibers 5:1–15. https://doi.org/10.3390/fib5040047

    Article  CAS  Google Scholar 

  77. de Magalhães LF, França S, dos Santos Oliveira M, Peixoto RAF, Bessa SAL, da Silva Bezerra AC (2020) Iron ore tailings as a supplementary cementitious material in the production of pigmented cements. J Clean Prod 274:123260. https://doi.org/10.1016/j.jclepro.2020.123260

    Article  CAS  Google Scholar 

  78. Kumar S, Kumar R, Bandopadhyay A, Alex TC, Ravi Kumar B, Das SK, Mehrotra SP (2008) Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem Concr Compos 30:679–685. https://doi.org/10.1016/j.cemconcomp.2008.05.005

    Article  CAS  Google Scholar 

  79. Vargas F, Lopez M (2018) Development of a new supplementary cementitious material from the activation of copper tailings: mechanical performance and analysis of factors. J Clean Prod 182:427–436. https://doi.org/10.1016/j.jclepro.2018.01.223

    Article  CAS  Google Scholar 

  80. Yao G, Wang Q, Su Y, Wang J, Qiu J, Lyu X (2020) Mechanical activation as an innovative approach for the preparation of pozzolan from iron ore tailings. Miner Eng 145:106068. https://doi.org/10.1016/j.mineng.2019.106068

    Article  CAS  Google Scholar 

  81. Sajedi F, Razak HA (2011) Effects of thermal and mechanical activation methods on compressive strength of ordinary Portland cement-slag mortar. Mater Des 32:984–995. https://doi.org/10.1016/j.matdes.2010.08.038

    Article  CAS  Google Scholar 

  82. Dey D, Srinivas D, Panda B, Suraneni P, Sitharam TG (2022) Use of industrial waste materials for 3D printing of sustainable concrete: a review. J Clean Prod 340:130749. https://doi.org/10.1016/j.jclepro.2022.130749

    Article  CAS  Google Scholar 

  83. Onuaguluchi O, Eren Ö (2016) Reusing copper tailings in concrete: corrosion performance and socioeconomic implications for the lefke-xeros area of cyprus. J Clean Prod 112:420–429. https://doi.org/10.1016/j.jclepro.2015.09.036

    Article  CAS  Google Scholar 

  84. Onuaguluchi O, Eren Ö (2012) Recycling of copper tailings as an additive in cement mortars. Constr Build Mater 37:723–727. https://doi.org/10.1016/j.conbuildmat.2012.08.009

    Article  Google Scholar 

  85. Almeida VO, Silvestro L, Gleize PJP, Kirchheim AP, Ivo A, Schneider H, Florian CEP (2023) Application of leached iron ore tailings to produce sustainable cements. Constr Build Mater 377:131095. https://doi.org/10.1016/j.conbuildmat.2023.131095

    Article  CAS  Google Scholar 

  86. Zhang Y, Li Z, Gu X, Nehdi ML, Marani A, Zhang L (2023) Utilization of iron ore tailings with high volume in green concrete. J Build Eng 72:106585. https://doi.org/10.1016/j.jobe.2023.106585

    Article  Google Scholar 

  87. Esmaeili J, Al-Mwanes AO (2023) Production of eco-friendly UHPC with high durability and resistance to harsh environmental conditions using copper mine tailings. J Build Eng 76:107297. https://doi.org/10.1016/j.jobe.2023.107297

    Article  Google Scholar 

  88. Liu K, Wang S, Quan X, Jing W, Xu J, Zhao N, Liu B, Ying H (2023) Industrial byproduct Iron ore tailings as ecofriendly materials in the utilization of cementitious composites. Constr Build Mater 372:130813. https://doi.org/10.1016/j.conbuildmat.2023.130813

    Article  Google Scholar 

  89. Han F, Li L, Song S, Liu J (2017) Early-age hydration characteristics of composite binder containing iron tailing powder. Powder Technol 315:322–331. https://doi.org/10.1016/j.powtec.2017.04.022

    Article  CAS  Google Scholar 

  90. Kuranchie FA, Shukla SK, Habibi D, Mohyeddin A (2015) Utilisation of iron ore tailings as aggregates in concrete. Cogent Eng. 2:1083137. https://doi.org/10.1080/23311916.2015.1083137

    Article  Google Scholar 

  91. Ashraf WB, Noor MA (2011) Performance-evaluation of concrete properties for different combined aggregate gradation approaches. Procedia Eng 14:2627–2634. https://doi.org/10.1016/j.proeng.2011.07.330

    Article  Google Scholar 

  92. Zhang Y, Zhang Y, She W, Yang L, Liu G, Yang Y (2019) Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr Build Mater 201:278–285. https://doi.org/10.1016/j.conbuildmat.2018.12.061

    Article  Google Scholar 

  93. Wangler T, Flatt RJ (2019) In: correction to: first rilem international conference on concrete and digital fabrication–digital concrete 2018, Springer International Publishing, 2019. https://doi.org/10.1007/978-3-319-99519-9_31

  94. Pierre APDRA (2016) Structural built-up of cement-based materials used for 3D- printing extrusion techniques. Mater Struct 49:1213–1220. https://doi.org/10.1617/s11527-015-0571-0

    Article  Google Scholar 

  95. Sun X, Wang Q, Wang H, Chen L (2020) Influence of multi-walled nanotubes on the fresh and hardened properties of a 3D printing PVA mortar ink. Constr Build Mater 247:118590. https://doi.org/10.1016/j.conbuildmat.2020.118590

    Article  CAS  Google Scholar 

  96. Rahul AV, Santhanam M, Meena H, Ghani Z (2019) 3D printable concrete: mixture design and test methods. Cem Concr Compos 97:13–23. https://doi.org/10.1016/j.cemconcomp.2018.12.014

    Article  CAS  Google Scholar 

  97. Guo H, Lv R, Bai S (2019) Recent advances on 3D printing graphene-based composites. Nano Mater Sci 1:101–115. https://doi.org/10.1016/j.nanoms.2019.03.003

    Article  Google Scholar 

  98. Hou S, Duan Z, Xiao J, Ye J (2021) A review of 3D printed concrete: performance requirements, testing measurements and mix design. Constr Build Mater 273:121745. https://doi.org/10.1016/j.conbuildmat.2020.121745

    Article  Google Scholar 

  99. Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T (2012) Mix design and fresh properties for high-performance printing concrete. Mater Struct 45:1221–1232. https://doi.org/10.1617/s11527-012-9828-z

    Article  CAS  Google Scholar 

  100. Bos F, Wolfs R, Ahmed Z, T, (2016) Salet, additive manufacturing of concrete in construction : potentials and challenges of 3D concrete printing. Virtual Phys Prototyp 11:209–225. https://doi.org/10.1080/17452759.2016.1209867

    Article  Google Scholar 

  101. Kaliyavaradhan SK, Ambily PS, Prem PR, Ghodke SB (2022) Test methods for 3D printable concrete. Autom Constr 142:104529. https://doi.org/10.1016/j.autcon.2022.104529

    Article  Google Scholar 

  102. Kruger J, Cho S, Zeranka S, Viljoen C, Van Zijl G (2020) 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse. Compos Part B 183:107660. https://doi.org/10.1016/j.compositesb.2019.107660

    Article  CAS  Google Scholar 

  103. Buswell RA, Leal de Silva WR, Jones SZ, Dirrenberger J (2018) 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res 112:37–49. https://doi.org/10.1016/j.cemconres.2018.05.006

    Article  CAS  Google Scholar 

  104. Panda B, Tan MJ (2018) Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram Int 44:10258–10265. https://doi.org/10.1016/j.ceramint.2018.03.031

    Article  CAS  Google Scholar 

  105. Lachemi M, Hossain KMA, Lambros V, Nkinamubanzi PC, Bouzoubaâ N (2004) Self-consolidating concrete incorporating new viscosity modifying admixtures. Cem Concr Res 34:917–926. https://doi.org/10.1016/j.cemconres.2003.10.024

    Article  CAS  Google Scholar 

  106. Lv X, Shen W, Wang L, Dong Y, Zhang J, Xie Z (2019) A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation. J Clean Prod 211:704–715. https://doi.org/10.1016/j.jclepro.2018.11.107

    Article  Google Scholar 

  107. Evangelista L, de Brito J (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem Concr Compos 29:397–401. https://doi.org/10.1016/j.cemconcomp.2006.12.004

    Article  CAS  Google Scholar 

  108. Karthikeyan B, Kathyayini R, Kumar VA, Uthra V, Kumaran SS (2021) Effect of dumped iron ore tailing waste as fine aggregate with steel and basalt fibre in improving the performance of concrete. Mater Today Proc 46:7624–7632. https://doi.org/10.1016/j.matpr.2021.01.906

    Article  CAS  Google Scholar 

  109. Karaog S, Mermerdas K, Güneyisi E, Gesog M (2012) Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr Build Mater 34:120–130. https://doi.org/10.1016/j.conbuildmat.2012.02.017

    Article  Google Scholar 

  110. Kalintzis CAA, Kuperman SC (2022) Creep and drying shrinkage of high performance concrete. Am Concr Inst 207:381–396

    Google Scholar 

  111. Bai Y, Darcy F, Basheer PAM (2005) Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate. Constr Build Mater 19:691–697. https://doi.org/10.1016/j.conbuildmat.2005.02.021

    Article  Google Scholar 

  112. Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res 33:1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X

    Article  CAS  Google Scholar 

  113. Cheng Y, Huang F, Qi S, Li W, Liu R, Li G (2020) Durability of concrete incorporated with siliceous iron tailings. Constr Build Mater 242:118147. https://doi.org/10.1016/j.conbuildmat.2020.118147

    Article  CAS  Google Scholar 

  114. Siddique R, Aggarwal Y, Aggarwal P, Kadri EH, Bennacer R (2011) Strength, durability, and micro-structural properties of concrete made with used-foundry sand (UFS). Constr Build Mater 25:1916–1925. https://doi.org/10.1016/j.conbuildmat.2010.11.065

    Article  Google Scholar 

  115. Li T, Wang S, Xu F, Meng X, Li B, Zhan M (2020) Study of the basic mechanical properties and degradation mechanism of recycled concrete with tailings before and after carbonation. J Clean Prod 259:120923. https://doi.org/10.1016/j.jclepro.2020.120923

    Article  CAS  Google Scholar 

  116. Wang L, Ma H, Li Z, Ma G, Guan J (2021) Cementitious composites blending with high belite sulfoaluminate and medium-heat Portland cements for largescale 3D printing. Addit Manuf 46:102189. https://doi.org/10.1016/j.addma.2021.102189

    Article  CAS  Google Scholar 

  117. Hou D, Li H, Zhang L, Zhang J (2018) Nano-scale mechanical properties investigation of C–S–H from hydrated tri-calcium silicate by nano-indentation and molecular dynamics simulation. Constr Build Mater 189:265–275. https://doi.org/10.1016/j.conbuildmat.2018.08.215

    Article  CAS  Google Scholar 

  118. Han F, Song S, Liu J, Huang S (2019) Properties of steam-cured precast concrete containing iron tailing powder. Powder Technol 345:292–299. https://doi.org/10.1016/j.powtec.2019.01.007

    Article  CAS  Google Scholar 

  119. Zhang N, Liu X, Sun H, Li L (2011) Cement and concrete research pozzolanic behaviour of compound-activated red mud-coal gangue mixture. Cem Concr Res 41:270–278. https://doi.org/10.1016/j.cemconres.2010.11.013

    Article  CAS  Google Scholar 

  120. Zhang N, Liu X, Sun H, Li L (2011) Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics. J Hazard Mater 185:329–335. https://doi.org/10.1016/j.jhazmat.2010.09.038

    Article  ADS  CAS  PubMed  Google Scholar 

  121. Parmaksız A, Özkök YÖ, Ağuş Y (2023) Natural radioactivity of a copper–zinc mine with a production facility in Türkiye and radiological consequences of usage of the tailing as a concrete additive. J Radioanal Nucl Chem 332:211–223. https://doi.org/10.1007/s10967-022-08751-x

    Article  CAS  Google Scholar 

  122. Lavdanskij PA, Nazarov VM, Stefanov NI, Frontasyeva MV (1989) Neutron activation analysis for determination of induced radioactivity in concrete of nuclear reactor shielding. J Radioanal Nucl Chem Artic 131:261–270. https://doi.org/10.1007/BF02060591

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AV contributed to framework of manuscript, data collection, writing—draft manuscript; JJ contributed to framework of manuscript, writing – review & editing, supervision.

Corresponding author

Correspondence to J. Jayaprakash.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the author.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneshwari, A., Jayaprakash, J. A review on 3D printable cementitious material containing copper and iron ore tailings: material characterization, activation methods, engineering properties, durability, and microstructure behavior. Innov. Infrastruct. Solut. 9, 74 (2024). https://doi.org/10.1007/s41062-024-01374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01374-z

Keywords

Navigation