Skip to main content

Advertisement

Log in

A systematic review on photocatalytic concrete for pavement applications: an innovative solution to reduce air pollution

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Air pollution is one of the major health threats for urban dwellers due to increased concentration of pollutants and vehicular traffic. Approximately 7.0 million premature deaths in the world are associated with air pollution. Although stringent emission standards have been introduced, no significant reduction in air quality index in metro cities has been reported. Alternative solutions such as photocatalytic materials can be utilized as an innovative strategy to reduce the concentration of pollutants. Photocatalytic materials can be used in photocatalytic concrete pavements, which decrease the concentration of NOx by photocatalytic activity. A systematic review of photocatalytic materials and its application in concrete pavements has been introduced. The laboratory and field investigations of photocatalytic concrete pavements have been discussed. It was found that NOx reduction up to 60 and 31%, respectively, was observed in laboratory and field conditions. Titanium dioxide (TiO2) is the mostly commonly used photocatalytic additive in the range of 3–10% by cement weight. The review found that the photocatalytic concrete pavements have not gained significant attention unlike other pavement materials. The demerits of TiO2 for field application and research lacunae in this domain have been discussed and based on which, future scope of research is proposed. It is envisaged that photocatalytic concrete pavements can play a significant role in reducing air pollutant concentration in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Manisalidis I, Stavropoulou E, Stavropoulou A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health. https://doi.org/10.3389/fpubh.2020.00014

    Article  Google Scholar 

  2. Anenberg S, Miller J, Henze D, Minjares R (2019) A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015, international council on clean transportation (ICCT). DC, USA, Washington

    Google Scholar 

  3. WHO (2022) https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health, Accessed on 12 Mar 2022

  4. Suman (2021) Air quality indices: a review of methods to interpret air quality status. Mater Today Proc 34:863–868. https://doi.org/10.1016/j.matpr.2020.07.141

    Article  Google Scholar 

  5. Walsh MP, Moore CA (1989) Motor vehicle contribution to global and transported air pollution. Stud Environ Sci 35:387–404. https://doi.org/10.1016/S0166-1116(08)70606-X

    Article  Google Scholar 

  6. Song X, Hao Y (2021) Research on the vehicle emission characteristics and its prevention and control strategy in the central plains urban agglomeration China. Sustainability. https://doi.org/10.3390/su13031119

    Article  Google Scholar 

  7. Buckeridge DL, Glazier R, Harvey BJ, Escobar M, Amrhein C, Frank J (2002) Effect of motor vehicle emissions on respiratory health in an urban area. Environ Health Perspect 110(3):293–300. https://doi.org/10.1289/ehp.02110293

    Article  Google Scholar 

  8. Burr ML, Karani G, Davies B (2004) Effects on respiratory health of a reduction in air pollution from vehicle exhaust emissions. Occup Environ Med 61:212–218. https://doi.org/10.1136/oem.2002.003244

    Article  Google Scholar 

  9. César AC, Carvalho JA, Nascimento LF (2015) Association between NOx exposure and deaths caused by respiratory diseases in a medium-sized Brazilian city. Braz J Med Biol Res Revista brasileira de pesquisas medicas e biologicas 48(12):1130–1135. https://doi.org/10.1590/1414-431X20154396

    Article  Google Scholar 

  10. Heberle SM, da Costa GM, Barros N, Rosa M (2018) The effects of atmospheric pollution in respiratory health. In: Hussain C (ed) Handbook of environmental materials management. Springer, Cham

    Google Scholar 

  11. Mbelambela EP, Hirota R, Eitoku M, Muchanga SMJ, Kiyosawa H, Yasumitsu-Lovell K, Lawanga OL, Suganuma N (2017) Occupation exposed to road-traffic emissions and respiratory health among congolese transit workers, particularly bus conductors, in Kinshasa: a cross-sectional study. Environ Health Prev Med 22(1):11. https://doi.org/10.1186/s12199-017-0608-9

    Article  Google Scholar 

  12. Mohandas S, Francis PT, Rakesh PS, Libin Antony PF (2019) Assessment of respiratory morbidity among bus drivers and conductors of the state road transport corporation, Kochi. Kerala J Family Med Prim Care 8(12):3887–3892. https://doi.org/10.4103/jfmpc.jfmpc_548_19.PMID:31879631;PMCID:PMC6924213

    Article  Google Scholar 

  13. Luo Z, Wang Y, Lv Z, He T, Zhao J, Wang Y, Gao F, Zhang Z, Liu H (2022) Impacts of vehicle emission on air quality and human health in China. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.152655

    Article  Google Scholar 

  14. Khandar C, Kosankar S (2014) A review of vehicular pollution in urban India and its effects on human health. J Adv Lab Res Biol. 5, E-ISSN: 0976–7614

  15. Sciaraffa R, Borghini A, Montuschi P, Gerosa GA, Ricciardi W, Moscato U (2017) Impact of air pollution on respiratory diseases in urban areas: a systematic review: daniele Ignazio La Milia. Eur J Public Health. https://doi.org/10.1093/eurpub/ckx189.117

    Article  Google Scholar 

  16. Schneidemesser E, Steinmar K, Weatherland EC, Bonn B, Gerwig H, Quedenau J (2019) Air pollution at human scales in an urban environment: impact of local environment and vehicles on particle number concentrations. Sci Total Environ 688:691–700. https://doi.org/10.1016/j.scitotenv.2019.06.309

    Article  Google Scholar 

  17. William M, Minjares R (2016) A technical summary of Euro 6/VI vehicle emission standards, Int Council Clean Trans. 1–12

  18. Wang J, Wu Q, Liu J, Yang H, Yin M, Chen S, Guo P, Ren J, Luo X, Linghu W, Huang Q (2019) Vehicle emission and atmospheric pollution in China: problems progress and prospects. PeerJ 7:e6932. https://doi.org/10.7717/peerj.6932

    Article  Google Scholar 

  19. Boonen E, Beeldens A (2014) Recent photocatalytic applications for air purification in Belgium. Coatings 4:553–573. https://doi.org/10.3390/coatings4030553

    Article  Google Scholar 

  20. Fan V, Yee SP, Klemeš JJ, Lee CT (2018) A review on air emissions assessment: transportation. J Clean Prod 194:673–684

    Article  Google Scholar 

  21. Čokorilo O, Ivković I, Kaplanović S (2019) Prediction of exhaust emission costs in air and road transportation. Sustainability 11(17):4688. https://doi.org/10.3390/su11174688

    Article  Google Scholar 

  22. De Marco T, Fava G, Guerrini GL, Manganelli G, Moriconi G, Riderelli L (2013) Use of photocatalytic products for sustainable construction development. In: Third international conference on sustainable construction materials and technologies

  23. Singh N, Mishra T, Banerjee R (2021) Emission inventory for road transport in India in 2020 framework and post factor policy impact assessment. Environ Sci Pollut Res 29:20844–20863

    Article  Google Scholar 

  24. Harrison RM, Vu TV, Jafar H, Shi Z (2021) More mileage in reducing urban air pollution from road traffic. Environ Int. https://doi.org/10.1016/j.envint.2020.106329

    Article  Google Scholar 

  25. Holnicki P, Nahorski Z, Kaluszko A (2021) Impact of vehicle fleet modernization on the traffic-originated air pollution in an urban area—a case study. Atmosphere. https://doi.org/10.3390/atmos12121581

    Article  Google Scholar 

  26. Gonzalez L, Perdiguero J, Sanz A (2021) Impact of public transport strikes on traffic and pollution in the city of Barcelona. Trans Res Part D Trans Environ. https://doi.org/10.1016/j.trd.2021.102952

    Article  Google Scholar 

  27. Nieuwenhuijsen MJ (2020) Urban and transport planning pathways to carbon neutral, liveable and healthy cities. A Rev Curr Evidence Environ Int. https://doi.org/10.1016/j.envint.2020.105661

    Article  Google Scholar 

  28. Qiao F, Nabi M, Li Q, Yu L (2020) Estimating light-duty vehicle emission factors using random forest regression model with pavement roughness. Trans Res Rec 2674(8):37–52. https://doi.org/10.1177/0361198120922997

    Article  Google Scholar 

  29. Ricke K, Drouet L, Caldeira K (2018) Country-level social cost of carbon. Nat Clim Chang 8:895–900. https://doi.org/10.1038/s41558-018-0282-y

    Article  Google Scholar 

  30. Foster A, Kumar N (2011) Health Effects of air quality regulations in Delhi India. Atmos Environ 45(9):1675–1683. https://doi.org/10.1016/j.atmosenv.2011.01.005

    Article  Google Scholar 

  31. Ohtani B (2014) Photocatalyst. In: Kreysa G, Ota K, Savinell RF (eds) Encyclopedia of applied electrochemistry. Springer, New York. https://doi.org/10.1007/978-1-4419-6996-5_497

    Chapter  Google Scholar 

  32. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  33. Serpone N, Emeline AV (2012) Semiconductor Photocatalysis—Past Present, and Future Outlook. J Phys Chem Lett 3:673–677. https://doi.org/10.1021/jz300071j

    Article  Google Scholar 

  34. Alina P, Janina A, Bogdan L (2016) Application of titanium dioxide in cement and concrete technology. Key Eng Mater 687:243–249

    Article  Google Scholar 

  35. Mircea D (2019) Self-cleaning concrete for landscaping applications. In: MATEC web of conferences, Vol 289 https://doi.org/10.1051/matecconf/201928905004

  36. Ren H, Koshy P, Chen W, Qi S, Sorrell CC (2017) Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340–366. https://doi.org/10.1016/j.jhazmat.2016.08.072

    Article  Google Scholar 

  37. Boweing N, Walker GS, Harrison PG (2006) Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25. Appl Catal B Environ 62:208–2016

    Article  Google Scholar 

  38. Lasek J, Yu Y, Wu JCS (2013) Removal of NOx by photocatalytic processes. J Photochem Photobiol C Photochem Rev 14:29–52. https://doi.org/10.1016/j.jphotochemrev.2012.08.002

    Article  Google Scholar 

  39. Poon CS, Cheung E (2007) NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr Build Mater 21:1746–1753

    Article  Google Scholar 

  40. Dylla H, Hassan MM, Mohammad LN, Rupnow T, Wright E (2010) Evaluation of environmental effectiveness of titanium dioxide photocatalyst coating for concrete pavement. Trans Res Record 2164:46–51

    Article  Google Scholar 

  41. Asadi S, Hassan MM, Kevern JT, Rupnow TD (2012) Development of photocatalytic pervious concrete pavement for air and storm water improvements. Trans Res Record 2290(1):161–167

    Article  Google Scholar 

  42. Janus M, Mądraszewski S, Zając K, Kusiak-Nejman (2013) A new preparation method of cement with photocatalytic activity. Materials 40–50

  43. Russell HS, Frederickson LB, Hertel O, Ellermann T, Jensen SS (2021) A review of photocatalytic materials for urban NOx remediation. Catalysts 11:675

    Article  Google Scholar 

  44. Ballari MM, Hunger M, Hüsken G, Brouwers HJH (2010) NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl Catal B 95:245–254

    Article  Google Scholar 

  45. Hassan M, Mohammad LN, Asadi S, Dylla H, Cooper S (2013) Sustainable photocatalytic asphalt pavements for mitigation of nitrogen oxide and sulfur dioxide vehicle emissions. J Mater Civ Eng ASCE. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000613

    Article  Google Scholar 

  46. Ballari MM, Brouwers HJH (2013) Full scale demonstration of air-purifying pavement. J Hazard Mater 254:406–414. https://doi.org/10.1016/j.jhazmat.2013.02.012

    Article  Google Scholar 

  47. Dylla H, Hassan MM, Osborn D (2012) Field evaluation of ability of photocatalytic concrete pavements to remove nitrogen oxides. Trans Res Record J Trans Res Board 2290:154–160

    Article  Google Scholar 

  48. De Melo JVS, Triches G, Gleize PJP, Villena J (2012) Development and evaluation of the efficiency of photocatalytic pavement blocks in the laboratory and after one year in the field. Constr Build Mater 37:310–319. https://doi.org/10.1016/j.conbuildmat.2012.07.073

    Article  Google Scholar 

  49. Boonen E, Beeldens A (2013) Photocatalytic roads: from lab tests to real scale applications. Eur Trans Res Rev 5:79–89. https://doi.org/10.1007/s12544-012-0085-6

    Article  Google Scholar 

  50. Boonen E, Beeldens A (2013) Photocatalytic roads: from lab tests to real scale applications. Eur Trans Res Rev 5(2):79–89

    Article  Google Scholar 

  51. Witkowski H, Jackiewicz-Rek W, Chilmon K, Jarosławski J, Tryfon-Bojarska A, Gąsiński A (2019) Air purification performance of photocatalytic concrete paving blocks after seven years of service. Appl Sci 9:1735

    Article  Google Scholar 

  52. Dong P, Xi X, Hou G (2015) Typical non–TiO2-based visible-light photocatalysts. Semicond Photocatal Mater Mech Appl. https://doi.org/10.5772/62889

    Article  Google Scholar 

  53. de Oliveira C, Viana MM, Amaral MCS (2020) Coupling photocatalytic degradation using a green TiO2 catalyst to membrane bioreactor for petroleum refinery wastewater reclamation. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.101093

    Article  Google Scholar 

  54. Khlyustova A, Sirotkin N, Kusova T, Kraev A, Titov V, Agafonov A (2020) Doped TiO2: the effect of doping elements on photocatalytic activity. Mater Adv 2020(1):1193–1201. https://doi.org/10.1039/D0MA00171F

    Article  Google Scholar 

  55. Tryba B, Piszcz M, Morawski AW (2010) Photocatalytic and self-cleaning properties of Ag-doped TiO2. Open Mater Sci J 4:5–8

    Article  Google Scholar 

  56. Seo S, Kim B (2020) Effect of Cu, Cr, S doped TiO2 for transparent plastic bar reinforced concrete. Appl Sci. https://doi.org/10.3390/app10207334

    Article  Google Scholar 

  57. Khannyra S, Mosquera MJ, Addou M, Gil MLA (2021) Cu-TiO2/SiO2 photocatalysts for concrete-based building materials: Self-cleaning and air de-pollution performance. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.125419

    Article  Google Scholar 

  58. Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, Villanueva CM, van Breda SG (2018) Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health 15(7):1557. https://doi.org/10.3390/ijerph15071557.PMID:30041450;PMCID:PMC6068531

    Article  Google Scholar 

  59. Relinque EJ, Grande M, Duran T, Castillo A, Castellote M (2020) Environmental impact of nano-functionalized construction materials: leaching of titanium and nitrates from photocatalytic pavements under outdoor conditions. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140817

    Article  Google Scholar 

  60. Bogutyn S, Arboleda C, Bordelon A, Tikalsky P (2015) Rejuvenation techniques for mortar containing photocatalytic TiO2 material. Constr Build Mater 96:96–101. https://doi.org/10.1016/j.conbuildmat.2015.07.192

    Article  Google Scholar 

  61. Jain S, Khare A (2008) Urban air quality in mega cities: a case study of Delhi City using vulnerability analysis. Environ Monitor Assess 136:257–265. https://doi.org/10.1007/s10661-007-9681-7

    Article  Google Scholar 

  62. Jadoon S, Nawazish S, Mahmood Q, Rafique A, Sohail S, Zaidi A (2022) Exploring health impacts of occupational exposure to carbon monoxide in the labour community of hattar industrial estate. Atmosphere 13(3):406. https://doi.org/10.3390/atmos13030406

    Article  Google Scholar 

  63. Rall DP (1974) Review of the health effects of sulfur oxides. Environ Health Perspect 8:97–121. https://doi.org/10.1289/ehp.74897

    Article  Google Scholar 

  64. Tong R, Liu J, Wang W, Fang Y (2020) Health effects of PM2.5 emissions from on-road vehicles during weekdays and weekends in Beijing, China. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2019.117258

    Article  Google Scholar 

  65. Coronado DR, Gattorno GR, Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. https://doi.org/10.1088/0957-4484/19/14/145605

    Article  Google Scholar 

  66. Kamarulzaman N, Kasim MF, Rusdi R (2015) Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res Lett. https://doi.org/10.1186/s11671-015-1034-9

    Article  Google Scholar 

  67. D’Amico P, Calzolari A, Ruini A (2017) New energy with ZnS: novel applications for a standard transparent compound. Sci Rep. https://doi.org/10.1038/s41598-017-17156-w

    Article  Google Scholar 

  68. Xu Y, Gao S (2012) Band gap of C3N4 in the GW approximation. Int J Hydrogen Energy 37(15):11072–11080. https://doi.org/10.1016/j.ijhydene.2012.04.138

    Article  Google Scholar 

  69. Sahu T, Ghosh B, Pradhan SK, Ganguly T (2012) Diverse role of silicon carbide in the domain of nanomaterials. Int J Electrochem. https://doi.org/10.1155/2012/271285

    Article  Google Scholar 

  70. Borrero PP, Sato F, Medina AN, Baesso ML, Bento AC (2010) Optical band-gap determination of nanostructured WO3 film. Appl Phys Lett. https://doi.org/10.1063/1.3313945

    Article  Google Scholar 

  71. Liu JJ, Fu XL, Chen SF, Zhu YF (2011) Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Appl Phys Lett. https://doi.org/10.1063/1.3660319

    Article  Google Scholar 

  72. Nasir SNS, Mohammed NA, Tukimon MA, Noh M, Arzaee NA, Teridi M (2021) Direct extrapolation techniques on the energy band diagram of BiVO4 thin films. Phys B Condens Matter. https://doi.org/10.1016/j.physb.2020.412719

    Article  Google Scholar 

  73. Ansari SP, Fawad A, Khan A, Cancar HD (2021) Carbon polymer hybrid supported nanomaterials for hydrogen production and storage application, Chapter-8. In: Nanomaterials for hydrogen storage applications, pp 133–152, https://doi.org/10.1016/B978-0-12-819476-8.00012-8

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anush K. Chandrappa.

Ethics declarations

Conflict of interest

No conflict of interest among the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, J., Chandrappa, A.K. A systematic review on photocatalytic concrete for pavement applications: an innovative solution to reduce air pollution. Innov. Infrastruct. Solut. 8, 90 (2023). https://doi.org/10.1007/s41062-023-01060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-023-01060-6

Keywords

Navigation