Skip to main content
Log in

Influence of nano silica on durability properties of concrete

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This study focuses on determining water permeability, water absorption, chloride permeability, and compressive strength of nano-silica added concrete. Nano-silica was utilized as a cement replacement material (0–3 wt %) to design and cast two different grade concrete mixes. The microstructure development of concrete was studied using scanning electron microscope images and energy-dispersive X-ray spectroscopy. The results specify that adding 3% nano-silica to concrete enhances its microstructure by creating a denser calcium silicate hydrate gel and lowering calcium hydroxide crystals. After 56 days, the compressive strength of concrete mixes (M 30 and M 40 grade) containing 3% nano-silica was 13.14% and 16.92% greater than the control mix (0% nano-silica). Compressive strength is reasonably high in nano-silica added concrete mixes, but they have low water absorption, water, and chloride permeability. Thus, nano-silica can develop concretes with lower water absorption, water permeability, and chloride permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar S, Rai B (2021) Durability performance and microstructure of binary blended high-performance concrete. Innov Infrastruct Solut 6:152. https://doi.org/10.1007/s41062-021-00525-w

    Article  Google Scholar 

  2. Li H, Xiao H, Yuan J, Ou J (2004) Microstructure of cement mortar with nanoparticles. Compos Part B Eng 35:185–189. https://doi.org/10.1016/S1359-8368(03)00052-0

    Article  Google Scholar 

  3. Nazari A, Riahi S, Riahi Shirin, Shamekhi S, Khademno A (2010) Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci 6(5):6–9

    Google Scholar 

  4. Nazari A, Riahi S, Riahi Shirin, Shamekhi S, Khademno A (2010) The effects of incorporation Fe2O3 nanoparticles on tensile and flexural strength of concrete. J Am Sci 6(4):90–93

    Google Scholar 

  5. Lee B, Jayapalan A, Kurtis K (2013) Effects of nano-TiO2 on properties of cement-based materials. Mag Concr Res 65(21):1293–1302. https://doi.org/10.1680/macr.13.00131

    Article  Google Scholar 

  6. Shaikh F, Supit S (2014) Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr Build Mater 70:309–321. https://doi.org/10.1016/j.conbuildmat.2014.07.099

    Article  Google Scholar 

  7. Amin M, Abu el-hassan K (2015) Effect of using different types of nano materials on mechanical properties of high strength concrete. Constr Build Mater 80:116–124. https://doi.org/10.1016/j.conbuildmat.2014.12.075

    Article  Google Scholar 

  8. Ghosal M, Chakraborty A (2015) A comparative assessment of Nano-SiO2 and Nano-TiO2 insertion in concrete. Eur J Adv Eng Technol 2(8):44–48

    Google Scholar 

  9. Niewiadomski P, Cwirzeń A, Hoła J (2015) The influence of an additive in the form of selected nanoparticles on the physical and mechanical characteristics of self-compacting concrete. Procedia Eng 111:601–606. https://doi.org/10.1016/j.proeng.2015.07.052

    Article  Google Scholar 

  10. Kumari K et al (2016) Nanoparticles for enhancing mechanical properties of fly ash concrete. Mater Today: Proc 3:2387–2393

    Google Scholar 

  11. Patil H, Dwivedi A (2021) Impact of nano ZnO particles on the characteristics of the cement mortar. Innov Infrastruct Solut 6:222. https://doi.org/10.1007/s41062-021-00588-9

    Article  Google Scholar 

  12. Ji T (2005) Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem Concr Res 35:1943–1947. https://doi.org/10.1016/j.cemconres.2005.07.004

    Article  Google Scholar 

  13. Jalal M, Pouladkhan A, Norouzi H, Choubdar G (2012) Chloride penetration, water absorption and electrical resistivity of high performance concrete containing nano silica and silica fume. J Am Sci 8(4):278–284

    Google Scholar 

  14. Du H, Du S, Liu X (2014) Durability performances of concrete with nano-silica. Constr Build Mater 73:705–712. https://doi.org/10.1016/j.conbuildmat.2014.10.014

    Article  Google Scholar 

  15. Rao S, Silva P, Brito J (2015) Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2). Constr Build Mater 96:508–517. https://doi.org/10.1016/j.conbuildmat.2015.08.049

    Article  Google Scholar 

  16. Du H, Pang S (2019) High performance cement composites with colloidal nano silica. Constr Build Mater 224:317–325. https://doi.org/10.1016/j.conbuildmat.2019.07.045

    Article  Google Scholar 

  17. Rajput B, Pimplikar S (2021) Abrasion and impact resistance of concrete produced with nano-silica. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.10.268

    Article  Google Scholar 

  18. IS 269:2015 Ordinary portland cement—specification. Bureau of Indian Standards. New Delhi

  19. IS 3812 (Part 1):2013 Pulverized fuel ash—specification. Bureau of Indian Standards. New Delhi

  20. IS 383:2016 Coarse and fine aggregate for concrete—specification. Bureau of Indian Standards. New Delhi

  21. IS 10262:2009 Concrete mix proportioning—guidelines. Bureau of Indian Standards. New Delhi

  22. IS 516:1959 Methods of tests for strength of concrete. Bureau of Indian Standards. New Delhi

  23. DIN 1048-5:1991 Testing Concrete—testing of hardened concrete (specimens prepared in mould). German Institute for Standardisation (Deutsches Institut für Normung)

  24. ASTM C1202: (2012) Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. American Society for Testing and Materials

  25. BS 1881–122:1983 Testing concrete—method for determination of water absorption. British Standards Institution, London

  26. Bapat J (2013) Mineral admixtures in cement and concrete. CRC Press, Boca Raton

    Google Scholar 

  27. Richardson I (1999) The nature of C–S–H in hardened cements. Cem Concr Res 29:1131–1147

    Article  Google Scholar 

  28. Kunther W, Ferreiro S, Skibsted J (2017) Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders. J Mater Chem A 5:17401–17412. https://doi.org/10.1039/c7ta06104h

    Article  Google Scholar 

  29. Abd.El.Aleem S, Heikal M, Morsi W (2014) Hydration characteristic, thermal expansion, and microstructure of cement containing nano-silica. Constr Build Mater 59:151–160. https://doi.org/10.1016/j.conbuildmat.2014.02.039

    Article  Google Scholar 

  30. Stefanidou M, Papayianni I (2012) Influence of nano-SiO2 on the portland cement pastes. Compos Part B Eng 43:2706–2710. https://doi.org/10.1016/j.compositesb.2011.12.015

    Article  Google Scholar 

  31. Singh L, Bhattacharyya S, Sharma U, Mishra G, Ahalawat S (2013) Microstructure improvement of cementitious systems using nanomaterials: a key for enhancing the durability of concrete. In: Ninth Int Conf on Creep, Shrinkage, and Durability Mechanics, pp 293–301

  32. Alhawat M, Ashour A, El-Khoja A (2020) Properties of concrete incorporating different nano silica particles. Mater Res Innov 24(3):133–144. https://doi.org/10.1080/14328917.2019.1616140

    Article  Google Scholar 

  33. Reddy A, Reddy P, Kavyateja B, Reddy G (2020) Influence of nanomaterial on high-volume fly ash concrete: a statistical approach. Innov Infrastruct Solut 5:88. https://doi.org/10.1007/s41062-020-00340-9

    Article  Google Scholar 

  34. Quercia G, Spiesz P, Huskan G, Brouwers HJH (2014) SCC modification by use of amorphous nano silica. Cem Concr Compos 45:69–81. https://doi.org/10.1016/j.cemconcomp.2013.09.001

    Article  Google Scholar 

  35. Kim M, Kim K, Ann K (2016) The influence of C3A content in cement on the chloride transport. Adv Mater Sci Eng 2016:5962821. https://doi.org/10.1155/2016/5962821

    Article  Google Scholar 

  36. Mohammed T, Hamada H (2003) Relationship between free chloride and total chloride contents in concrete. Cem Concr Res 33:1487–1490. https://doi.org/10.1016/S0008-8846(03)00065-6

    Article  Google Scholar 

  37. Dinakar P, Babu K, Santhanam M (2008) Durability properties of high volume fly ash self compacting concretes. Cem Concr Compos 30:880–886. https://doi.org/10.1016/j.cemconcomp.2008.06.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babalu Rajput.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical statement

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, B., Pimplikar, S.S. Influence of nano silica on durability properties of concrete. Innov. Infrastruct. Solut. 7, 180 (2022). https://doi.org/10.1007/s41062-022-00777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00777-0

Keywords

Navigation