Skip to main content

Advertisement

Log in

Environmental concern, leachability and leaching modelling of fly ash and microbes: State-of-the-art review

  • State-of-the-art paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Quantification and appraisal of the effects of potentially hazardous materials in the environment are of great importance. Revamping of environmental hazard assessment technique has been suggested which primarily focuses on the release of contaminants from waste bodies instead of conventional estimation of waste concentration limits during the release. Production of waste like fly ash and slag in massive amounts from industrial units, thermal, iron and steel plants leads to leaching of contaminants that can have deleterious effect on different components of ecosystem. Different leaching methods are available for predicting the natural leaching of harmful contaminants from fly ash in the laboratory, but it is challenging to select a distinct procedure that can precisely predict the actual scenario for a precise evaluation of different contaminants. The physical–chemical properties of waste, waste disposal life, source configuration and the climatic circumstances of the disposal area must be regarded specifically to select the most appropriate leaching system according to a particular circumstance. As these considerations cannot be established, researchers have suggested several leaching methods and models with the appropriate equipment, which are based on their requirements data on different situations, in the deficiency of a specified procedure and non-standardization of equipment. The present review paper presents state of the art on fly ash, leachability tests, bio-stabilisation methods and various numerical models for determining the contaminant transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

D :

Diffusion coefficient

H :

Hydraulic potential

T :

Total weight of solute

B :

Fraction of average free sedimentation segment length and grain radius

C :

Concentration of solute

G :

Acceleration due to gravity

N :

Porosity

Q :

Water flux

S :

Quantity of dissolved solvate

T :

Time at any point

V :

Velocity coefficient

X :

Distance

z :

Depth

C b :

Concentration of aqueous-phase suspended bacteria

D m :

Mechanical dispersion coefficient

D p :

Effective diffusion constant

J s :

Solute flux (steady state)

K f :

Irreversible adsorption constant

K r :

Reversible adsorption constant

d c :

Diameter of spherical collector

d b :

Diameter of bacteria

d 1 :

Decay rate coefficient of bacteria

g 1 :

Bacteria’s growth rate coefficient

k 1 :

Rate coefficient of reversible attachment

k 2 :

Rate coefficient of detachment

k 3 :

Rate coefficient of irreversible attachment

v g :

Bacteria’s settling velocity

v w :

Pore water velocity

θ :

Volumetric water content

α :

Sticking coefficient

\(v\) :

Velocity of liquid

φ :

Sources of solute

ρ :

Bulk density of soil

η :

Collision efficiency

ε :

Empirical correction factor

ρ b :

Density of bacteria

ρ w :

Water density

μ w :

Viscosity

σ b :

Bacteria’s volumetric fraction connected on hard surface

R(z,t) :

Water deracination by roots

K(θ) :

Hydraulic conductivity

C im :

Concentrations of immobile microbes

C mm :

Concentrations of mobile microbes

C im,max :

Maximum retention volume of saturated sites

References

  1. Sawhney BL, Kozloski RP (1984) Organic pollutants in leachates from landfill sites. J Environ Qual 13(3):349–352

    Google Scholar 

  2. Medina A, Gamero P, Querol X, Moreno N, De León B, Almanza M, Vargas G, Izquierdo M, Font O (2010) Fly ash from a Mexican mineral coal I: mineralogical and chemical characterization. J Hazard Mater 181(1–3):82–90

    Google Scholar 

  3. Mishra DP, Das SK (2010) A study of physico-chemical and mineralogical properties of Talcher coal fly ash for stowing in underground coal mines. Mater Charact 61(11):1252–1259

    Google Scholar 

  4. Mishra SB, Langwenya SP, Mamba BB, Balakrishnan M (2010) Study on surface morphology and physicochemical properties of raw and activated South African coal and coal fly ash. Phys Chem Earth 35(13–14):811–814

    Google Scholar 

  5. Senneca O (2008) Burning and physico-chemical characteristics of carbon in ash from a coal fired power plant. Fuel 87(7):1207–1216

    Google Scholar 

  6. Bhat I, Rupali S, Kumar A (2020) Environmental impact assessment of soil stabilization materials. Sustainable environment and infrastructure. Springer, Cham, pp 401–407

    Google Scholar 

  7. Brooks RM (2009) Soil stabilization with flyash and rice husk ash. Int J Res Rev Appl Sci 1(3):209–217

    Google Scholar 

  8. Edil TB, Acosta HA, Benson CH (2006) Stabilizing soft fine-grained soils with fly ash. J Mater Civ Eng 18(2):283–294

    Google Scholar 

  9. Puppala A, Hoyos L, Viyanant C, Musenda C (2000) Fiber and fly ash stabilization methods to treat soft expansive soils. Proceed United Eng Found / ASCE Geo-Inst Soft Gr Technol Conf—Soft Gr Technol GSP 112(301):136–145

    Google Scholar 

  10. Tastan EO, Edil TB, Benson CH, Aydilek AH (2011) Stabilization of organic soils with fly ash. J Geotech Geoenviron Eng 137(9):819–833

    Google Scholar 

  11. Praharaj T, Powell MA, Hart BR, Tripathy S (2002) Leachability of elements from sub-bituminous coal fly ash from India. Environ Int 27(8):609–615

    Google Scholar 

  12. Chichester DL, Landsberger S (1996) Determination of the leaching dynamics of metals from municipal solid waste incinerator fly ash using a column test. J Air Waste Manag Assoc 46(7):643–649

    Google Scholar 

  13. Christensen TH, Kjeldsen P, Hans-Jørgen A, Albrechtsen A, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol 24(2):119–202

    Google Scholar 

  14. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16(7–8):659–718

    Google Scholar 

  15. Jun D, Yongsheng Z, Weihong Z, Mei H (2009) Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. J Hazard Mater 161(1):224–230

    Google Scholar 

  16. Onay TT, Pohland FG (1998) In situ nitrogen management in controlled bioreactor landfills. Water Res 32(5):1383–1392

    Google Scholar 

  17. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493

    Google Scholar 

  18. Šan I, Onay TT (2001) Impact of various leachate recirculation regimes on municipal solid waste degradation. J Hazard Mater 87(1–3):259–271

    Google Scholar 

  19. Zhou ZH, Dai QP, Wu Q (2006) Determination of hazardous organic constituents in landfill leachate, Guangzhou Chem. Ind 34:56–58

    Google Scholar 

  20. Dai S, Zhao L, Peng S, Chou CL, Wang X, Zhang Y, Li D, Sun Y (2010) Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia. China Int J Coal Geol 81(4):320–332

    Google Scholar 

  21. Goodarzi F (2006) Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel 85(10–11):1418–1427

    Google Scholar 

  22. Tao D, Fan M, Ming M, Jiang XK (2009) Dry coal fly ash cleaning using rotary triboelectrostatic separator. Min Sci Technol China Univ Min Technol 19(5):642–647

    Google Scholar 

  23. Bool LE, Helble JJ (1995) A laboratory study of the partitioning of trace elements during pulverized coal combustion. Energy Fuels 9(5):880–887

    Google Scholar 

  24. Xiang W, Han B, Zhou D, Nzihou A (2012) Physicochemical properties and heavy metals leachability of fly ash from coal-fired power plant. Int J Min Sci Technol China Univ Min Technol 22(3):405–409

    Google Scholar 

  25. Kumar A, Rupali S (2020) Prediction of UCS and STS of Kaolin clay stabilized with supplementary cementitious material using ANN and MLR. Adv Comput Des 5(2):195–207

    Google Scholar 

  26. Verma C, Madan S, Hussain A (2016) Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi. India Cogent Eng 3(1):1179243

    Google Scholar 

  27. Nayanthara PGN, Dassanayake ABN, Nakashima K, Kawasaki S (2019) Microbial induced carbonate precipitation using a native inland bacterium for beach sand stabilization in nearshore areas. Appl Sci. https://doi.org/10.3390/app9153201

    Article  Google Scholar 

  28. Dilrukshia R, Kawasakib S (2016) Plant-derived urease induced sand cementation used in geotechnical engineering applications. In: International conference on geomechanics, geo-energy and geo-resources-IC3G, pp 28–29

  29. Liu S, Yu J, Peng X, Cai Y, Tu B (2020) Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation. Constr Build Mater 248:118611

    Google Scholar 

  30. Montoya BM, Dejong JT, Boulanger RW (2013) Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Bio Chemo Mech Process Geotech Eng Geotech Symp Print 2013(4):125–135

    Google Scholar 

  31. Moravej S, Habibagahi G, Nikooee E, Niazi A (2018) Geoderma Stabilization of dispersive soils by means of biological calcite precipitation. Geoderma 315:130–137

    Google Scholar 

  32. Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes metal leaching from electronic scrap by bacteria and fungi. Process Metall 9:569–576

    Google Scholar 

  33. Karnati VR, Munaga T, Gonavaram KK, Amitava B (2020) Study on strength and leaching behavior of biogeochemical cemented sand. Geomicrobiol J 37(7):670–681

    Google Scholar 

  34. Bin-Shafique S, Benson CH, Edil TB, Hwang K (2006) Leachate concentrations from water leach and column leach tests on fly ash-stabilized soils. Environ Eng Sci 23(1):53–67

    Google Scholar 

  35. Jegadeesan G, Al-Abed SR, Pinto P (2008) Influence of trace metal distribution on its leachability from coal fly ash. Fuel 87(10–11):1887–1893

    Google Scholar 

  36. Neupane G, Donahoe RJ (2013) Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel 104:758–770

    Google Scholar 

  37. Sorini SS (1997) An overview of leaching methods and their application to coal combustion by-products. In: Proc. 12th international symposium on coal combustion by-product (CCB) management and use, vol. 2. pp 1–43

  38. Yu Q, Nagataki S, Lin J, Saeki T, Hisada M (2005) The leachability of heavy metals in hardened fly ash cement and cement-solidified fly ash. Cem Concr Res 35(6):1056–1063

    Google Scholar 

  39. Zhou D, Li Y, Zhang Y, Zhang C, Li X, Chen Z, Huang J, Li X, Flores G, Kamon M (2014) Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J Contam Hydrol 168:1–16

    Google Scholar 

  40. Environment Canada (1990) Compendium of waste leaching test,n Environ. Protection Series, Report EPS3/HA/7. Ontario, Canada

  41. Kosson DS, Garrabrants AC, van der Sloot H, Thorneloe S, Benware R, Helms G et al (2012) The leaching environmental assessment framework as a tool for risk‐informed, science‐based regulation. 19 June 2012. Retrieved on Sept 21, 2016. A presentation

  42. ASTM D4874–95 (2014) Leaching solid material in a column apparatus 1, 95 (Reapproved 2014), pp. 1–8. https://doi.org/10.1520/D4874-95R14. Copyright

  43. Morar DL, Aydilek AH, Seagren EA, Demirkan MM (2012) Leaching of metals from fly ash-amended permeable reactive barriers. J Environ Eng (United States) 138(8):815–825

    Google Scholar 

  44. Beesley L, Moreno-Jiménez E, Clemente R, Lepp N, Dickinson N (2010) Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environ Pollut 158(1):155–160

    Google Scholar 

  45. Fällman AM (2000) Leaching of chromium from steel slag in laboratory and field tests-a solubility controlled process? Stud Env Sci 71(C):531–540

  46. Francois V, Feuillade G, Matejka G, Lagier T, Skhiri N (2007) Leachate recirculation effects on waste degradation: study on columns. Waste Manag 27(9):1259–1272

    Google Scholar 

  47. Hjelmar O (1990) Leachate from land disposal of coal fly ash. Waste Manag Res 8(6):429–449

    Google Scholar 

  48. Hwang IH, Ouchi Y, Matsuto T (2007) Characteristics of leachate from pyrolysis residue of sewage sludge. Chemosphere 68(10):1913–1919

    Google Scholar 

  49. Komnitsas K, Bartzas G, Paspaliaris I (2004) Efficiency of limestone and red mud barriers: laboratory column studies. Miner Eng 17(2):183–194

    Google Scholar 

  50. Maszkowska J, Kołodziejska M, Białk-Bielińska A, Mrozik W, Kumirska J, Stepnowski P, Palavinskas R, Krüger O, Kalbe U (2013) Column and batch tests of sulfonamide leaching from different types of soil. J Hazard Mater 260:468–474

    Google Scholar 

  51. Zachara JM, Streile GP (1991) Use of batch and column methodologies to assess utility waste leaching and subsurface chemical attenuation (No. EPRI-EN--7313). Electric Power Research Inst

    Google Scholar 

  52. Dandautiya R, Singh AP, Kundu S (2018) Impact assessment of fly ash on ground water quality: an experimental study using batch leaching tests. Waste Manag Res 36(7):624–634

    Google Scholar 

  53. Quina MJ, Bordado JCM, Quinta-Ferreira RM (2011) Percolation and batch leaching tests to assess release of inorganic pollutants from municipal solid waste incinerator residues. Waste Manag 31(2):236–245

    Google Scholar 

  54. SW E (2004) 846 Method 1310B: extraction procedure (EP) toxicity test method and structural integrity test

  55. Chong SL, Peart J, Ormsby WC, Griffith MS (1990) Leaching test studies using extraction procedure toxicity test and toxicity characteristic leaching procedure. Public Roads 54(3):241–248

    Google Scholar 

  56. ASTM D3987-12 (2020) Standard practice for shake extraction of solid waste with water. ASTM International, West Conshohocken, PA

  57. US-EPA (1992) Toxicity characteristic leaching procedure. Method 1311:1–35

    Google Scholar 

  58. US-EPA (1994) Synthetic precipitation leaching procedure. EPA Tech Resour Doc 1982(85):1–30

    Google Scholar 

  59. Cui H, Fan Y, Fang G, Zhang H, Su B, Zhou J (2016) Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: a five-year field experiment. Ecotoxicol Environ Saf 134:148–155

    Google Scholar 

  60. Benezet JC, Adamiec P, Benhassaine A (2008) Relation between silico-aluminous fly ash and its coal of origin. Particuology 6(2):85–92

    Google Scholar 

  61. Ibáñez J, Font O, Moreno N, Elvira JJ, Alvarez S, Querol X (2013) Quantitative Rietveld analysis of the crystalline and amorphous phases in coal fly ashes. Fuel 105:314–317

    Google Scholar 

  62. Liu Y, Zheng L, Li X, Xie S (2009) SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures. J Hazard Mater 162(1):161–173

    Google Scholar 

  63. Chengfeng Z, Qiang Y, Junming S (2005) Characteristics of particulate matter from emissions of four typical coal-fired power plants in China. Fuel Process Technol 86(7):757–768

    Google Scholar 

  64. Wang N, Sun X, Zhao Q, Yang Y, Wang P (2020) Leachability and adverse effects of coal fly ash: a review. J Hazard Mater 396:122725. https://doi.org/10.1016/j.jhazmat.2020.122725

    Article  Google Scholar 

  65. Tiwari MK, Bajpai S, Dewangan UK, Tamrakar RK (2015) Suitability of leaching test methods for fly ash and slag: a review. J Radiat Res Appl Sci 8(4):523–537

    Google Scholar 

  66. Fujimori E, Shiozawa R, Iwata S, Chiba K, Haraguchi H (2002) Multielement and morphological characterization of industrial waste incineration fly ash as studied by ICP-AES/ICP-MS and SEM-EDS. Bull Chem Soc Jpn 75(6):1205–1213

    Google Scholar 

  67. Paya-Perez A, Sala J, Mousty F (1993) Comparison of ICP-AES and ICP-MS for the analysis of trace elements in soil extracts. Int J Environ Anal Chem 51(1–4):223–230

    Google Scholar 

  68. Dudas MJ (1981) Long-term leachability of selected elements from fly ash. Environ Sci Technol 15(7):840–843

    Google Scholar 

  69. Shivpuri KK, Lokeshappa B, Kulkarni DA, Dikshit AK (2012) Metal leaching potential in coal fly ash. Am J Environ Eng 1(1):21–27

    Google Scholar 

  70. Georgakopoulos A, Filippidis A, Kassoli-Fournaraki A, Iordanidis A, Fernández-Turiel JL, Llorens JF, Gimeno D (2002) Environmentally important elements in fly ashes and their leachates of the power stations of Greece. Energy Sources 24(1):83–91

    Google Scholar 

  71. Singh SP, Sangita S (2016) Mitigation of leaching of major and trace elements from pond ash deposits by lime column treatment. Geotech Geol Eng 34(6):2019–2031

    Google Scholar 

  72. Barman PJ, Kartha SA, Gupta S, Pradhan B (2012) A study on leaching behavior of Na, Ca and K using column leach test. Int J Environ Ecol Eng 6(10):679–683

    Google Scholar 

  73. Silva L, Ward C, Hower J, Izquierdo M, Waanders F, Oliveira M, Li Z, Hatch R, Querol X (2010) Mineralogy and leaching characteristics of coal ash from a major Brazilian power plant. Coal Combust Gasif Prod 2(1):51–65

    Google Scholar 

  74. Gupta N, Gedam VV, Moghe C, Labhasetwar P (2019) Comparative assessment of batch and column leaching studies for heavy metals release from coal fly ash bricks and clay bricks. Environ Technol Innov 16:100461

    Google Scholar 

  75. Takao T, Kenji N, Masateru N (2007) Leaching test of coal fly ash for the landfill. In: World of Coal Ash (WOCA), May 7–10, 2007, Northern Kentucky, USA, 12

  76. Zhang MH, Blanchette MC, Malhotra VM (2001) Leachability of trace metal elements from fly ash concrete: results from column-leaching and batch-leaching tests. ACI Mater J 98(2):126–136

    Google Scholar 

  77. Suzuki K, Ono Y (2008) Leaching characteristics of stabilized/solidified fly ash generated from ash-melting plant. Chemosphere 71(5):922–932

    Google Scholar 

  78. Kazonich G, Kim AG (1999) The release of base metals during acidic leaching of fly ash. In: International ash utilization symposium. Oct, pp 18–20

  79. Hillier SR, Sangha CM, Plunkett BA, Walden PJ (1999) Long-term leaching of toxic trace metals from Portland cement concrete. Cem Concr Res 29(4):515–521

    Google Scholar 

  80. Palumbo AV, Porat I, Phillips JR, Amonette JE, Drake MM, Brown SD, Schadt CW (2009) Leaching of mixtures of biochar and fly ash. In: World of coal ash - science, applications and sustainability: Proceedings of the 3rd World of coal ash Conference (WOCA 2009), May 4–7, 2009, Lexington, Kentucky, pp 128–134. Lexington, Kentucky: American Coal Ash Association. PNNL-SA-65644

  81. Clement TP, Peyton BM, Skeen RS, Jennings DA, Petersen JN (1997) Microbial growth and transport in porous media under denitrification conditions: experiments and simulations. J Contam Hydrol 24(3–4):269–285

    Google Scholar 

  82. Addiscott TM, Wagenet RJ (1985) Concepts of solute leaching in soils: a review of modelling approaches. J Soil Sci 36(3):411–424

    Google Scholar 

  83. Wagenet RJ, Rao BK (1983) Description of nitrogen movement in the presence of spatially variable soil hydraulic properties. Agric Water Manag 6(2–3):227–242

    Google Scholar 

  84. Kim SB (2006) Numerical analysis of bacterial transport in saturated porous media. Hydrol Process: Int J 20(5):1177–1186

    Google Scholar 

  85. Li L, Benson CH, Edil TB, Hatipoglu B (2006) Groundwater impacts from coal ash in highways. In: Proceedings of the institution of civil engineers-waste and resource management, 159(4):151–163. https://doi.org/10.1680/warm.2006.159.4.151

  86. Leij FJ, Skaggs TH, Van Genuchten MT (1991) Analytical solutions for solute transport in three-dimensional semi-infinite porous media. Water Resour Res 27(10):2719–2733

    Google Scholar 

  87. Li L, Benson CH, Edil TB, Hatipoglu B (2006) WiscLEACH: A model for predicting ground water impacts from fly-ash stabilized layers in roadways. In Geocongress 2006: Geotechnical engineering in the information technology age ASCE (1–6). https://ascelibrary.org/doi/abs/10.1061/40803(187)58

  88. Zhong H, Liu G, Jiang Y, Yang J, Liu Y, Yang X, Liu Z, Zeng G (2017) Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: a review. Biotechnol Adv 35(4):490–504

    Google Scholar 

  89. Praveen Kumar R, Dodagoudar GR, Rao BN (2007) Meshfree modelling of one-dimensional contaminant transport in unsaturated porous media. Geomech Geoeng: Int J 2(2):129–136

    Google Scholar 

  90. Kumar RP, Dodagoudar GR (2010) Two-dimensional meshfree modelling of contaminant transport through saturated porous media using RPIM. Environ Earth Sci 61(2):341–353

    Google Scholar 

  91. Kumar RP, Dodagoudar GR (2008) Two-dimensional modelling of contaminant transport through saturated porous media using the radial point interpolation method (RPIM). Hydrogeol J 16(8):1497

    Google Scholar 

  92. Meenal M, Eldho TI (2012) Two-dimensional contaminant transport modeling using meshfree point collocation method (PCM). Eng Anal Boundary Elem 36(4):551–561

    Google Scholar 

  93. Rupali S, Sawant VA (2019) 1 D contaminant transport through unsaturated stratified media using EFGM. Adv Environ Res 8(1):1–21

    Google Scholar 

  94. Rupali S, Sawant VA (2016) 1D contaminant transport using element free Galerkin method with irregular nodes. Coupled Syst Mech 5(3):203–221

    Google Scholar 

  95. Rupali S, Sawant VA (2016) Contaminant transport through geomembranes overlying clay and sand using element free Galerkin method. Int J Geosynth Ground Eng 2(2):14

    Google Scholar 

  96. Satavalekar RS, Sawant VA (2016) Two dimensional contaminant transport through layered soil using element free Galerkin method. Indian Geotech J 46(2):192–205

    Google Scholar 

  97. Satavalekar RS, Sawant VA (2014) Numerical modelling of contaminant transport using FEM and meshfree method. Adv Environ Res 3(2):117–129

    Google Scholar 

  98. Papadopoulou MP, Karatzas GP, Bougioukou GG (2007) Numerical modelling of the environmental impact of landfill leachate leakage on groundwater quality—a field application. Environ Model Assess 12(1):43–54

    Google Scholar 

  99. Amoozegar-Fard A, Nielsen DR, Warrick AW (1982) Soil solute concentration distributions for spatially varying pore water velocities and apparent diffusion coefficients. Soil Sci Soc Am J 46(1):3–9

    Google Scholar 

  100. Schäfer A, Ustohal P, Harms H, Stauffer F, Dracos T, Zehnder AJ (1998) Transport of bacteria in unsaturated porous media. J Contam Hydrol 33(1–2):149–169

    Google Scholar 

  101. Danckwerts PV (1953) Continuous flow systems: distribution of residence times. Chem Eng Sci 2(1):1–13

    Google Scholar 

  102. Eriksson E (1971) Compartment models and reservoir theory. Annu Rev Ecol Syst 2(1):67–84

    Google Scholar 

  103. Jury WA (1982) Simulation of solute transport using a transfer function model. Water Resour Res 18(2):363–368

    Google Scholar 

  104. Murphy EM, Ginn TR (2000) Modeling microbial processes in porous media. Hydrogeol J 8(1):142–158

    Google Scholar 

  105. Silva A, Delerue-Matos C, Figueiredo SA, Freitas OM (2019) The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: a review. Water 11(8):1555

    Google Scholar 

  106. Kalash KR, Alalwan HA, AlFuraiji MH, Al-minshid AH, Waisi BI (2020) Isothermal and kinetic studies of the adsorption removal of Pb (II), Cu (II), and Ni (II) ions from aqueous solutions using modified Chara sp algae. Korean Chem Eng Res 58(2):301–306

    Google Scholar 

  107. Alalwan HA, Mohammed MM, Sultan AJ, Abbas MN, Ibrahim TA, Aljaafari HA, Alminshid AA (2021) Adsorption of methyl green stain from aqueous solutions using non-conventional adsorbent media Isothermal kinetic and thermodynamic studies. Bioresour Technol Rep 14:100680

    Google Scholar 

  108. Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegrad 89:103–109

    Google Scholar 

  109. Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Google Scholar 

  110. Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, Risdon G, Arthur P, Semple KT, Paton GI (2010) When is a soil remediated? comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158(10):3032–3040

    Google Scholar 

  111. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques—classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):1–18

    Google Scholar 

  112. Fuller ME, Kruczek J, Schuster RL, Sheehan PL, Arienti PM (2003) Bioslurry treatment for soils contaminated with very high concentrations of 2, 4, 6-trinitrophenylmethylnitramine (tetryl). J Hazard Mater 100(1–3):245–257

    Google Scholar 

  113. Atlas RM, Philp J (2005) Bioremediation. Applied microbial solutions for real-world environmental cleanup. ASM press

    Google Scholar 

  114. Paudyn K, Rutter A, Rowe RK, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53(1):102–114

    Google Scholar 

  115. Volpe A, D’Arpa S, Del Moro G, Rossetti S, Tandoi V, Uricchio VF (2012) Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water Air Soil Pollut 223(4):1773–1782

    Google Scholar 

  116. Silva-Castro GA, Uad I, Rodríguez-Calvo A, González-López J, Calvo C (2015) Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environ Res 137:49–58

    Google Scholar 

  117. Hoeppel RE, Hinchee RE, Arthur MF (1991) Bioventing soils contaminated with petroleum hydrocarbons. J Ind Microbiol Biotechnol 8(3):141–146

    Google Scholar 

  118. Møller J, Winther P, Lund B, Kirkebjerg K, Westermann P (1996) Bioventing of diesel oil-contaminated soil: comparison of degradation rates in soil based on actual oil concentration and on respirometric data. J Ind Microbiol 16(2):110–116

    Google Scholar 

  119. Frankenberger WT, Emerson KD, Turner DW (1989) In situ bioremediation of an underground diesel fuel spill: a case history. Environ Manag 13(3):325–332

    Google Scholar 

  120. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Google Scholar 

  121. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  122. Stabnikov V, Ivanov V, Chu J (2015) Construction Biotechnology: a new area of biotechnological research and applications. World J Microbiol Biotechnol 31(9):1303–1314

    Google Scholar 

  123. Roeselers G, van Loosdrecht MCM (2010) Microbial phytase-induced Calcium-phosphate precipitation—a potential soil stabilization method. Folia Microbiol 55(6):621–624

    Google Scholar 

  124. Ehrlich HL (1999) Microbes as geologic agents: their role in mineral formation. Geomicrobiol J 16(2):135–153

    Google Scholar 

  125. Abatenh E, Gizaw B, Tsegaya Z, Wassie M (2017) Application of microorganisms in bioremediation-review. J Environ Microbiol 1(1):2–9

    Google Scholar 

  126. Mancera-López ME, Esparza-García F, Chávez-Gómez B, Rodríguez-Vázquez R, Saucedo-Castaneda G, Barrera-Cortés J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. Int Biodeterior Biodegrad 61(2):151–160

    Google Scholar 

  127. Hassan A, Periathamby A, Ahmed A, Innocent O, Hamid FS (2020) Effective bioremediation of heavy metal–contaminated landfill soil through bioaugmentation using consortia of fungi. J Soils Sediments 20(1):66–80

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rupali.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, T., Rupali, S. & Mohanty, A. Environmental concern, leachability and leaching modelling of fly ash and microbes: State-of-the-art review. Innov. Infrastruct. Solut. 7, 19 (2022). https://doi.org/10.1007/s41062-021-00619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00619-5

Keywords

Navigation