Skip to main content

Advertisement

Log in

Utilization of sugarcane bagasse ash as cement-replacing materials for concrete pavement: an overview

  • State-of-the-art paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Production of sustainable concrete by resorting to new technologies such as self-compacting concrete using different industrial wastes ensures the prevention of environmental pollution on one hand and renders the sustainable construction material. This paper presents an overview of the utilization of sugarcane bagasse ash (SCBA), a waste material from the sugar industry, in the production of both conventional concrete and self-compacting concrete (SCC). The paper reviews the physical and chemical properties, different processing techniques for the pozzolanic activity of SCBA, and effect on fresh and mechanical properties of conventional concrete and SCC. Further, the literature on a new type of self-compacting concrete called semi-flowable self-consolidating concrete involving utilization of the industrial waste in general and rigid pavements in particular is reviewed. The critical appraisal shows that the addition of SCBA at lower fractions (around 10–30%) enhances the performance of the concrete, and further, at higher levels of replacement, SCBA reduces the performance of concrete. There is relatively less work reported on the utilization of SCBA in the self-consolidating concrete and semi-flowable self-consolidating concrete, especially in the context of concrete pavement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

SCC:

Self-compacting concrete

SCBA:

Sugarcane bagasse ash

C–S–H:

Calcium silicate hydrate

CER:

Certified emission reduction

CDM:

Clean development mechanism

LOI:

Loss on ignition

OPC:

Ordinary Portland cement

PSD:

Particle size distribution

XRD:

X-ray diffraction

EFNARC:

The European Federation of Specialist Construction Chemicals and Concrete Systems

OCBA:

Ordinary concrete with SCBA

LWCBA:

Lightweight concrete with SCBA

SSCBA:

Self-compacting concrete with SCBA

w/c:

Water–cement ratio

PCE:

Polycarboxylate ether

PQC:

Pavement quality concrete

DLC:

Dry lean concrete

VMA:

Viscosity-modifying admixture

IRC:

Indian Roads Congress

References

  1. Camões A, Ferreira RM (2010) Technological evolution of concrete: from ancient times to ultra high-performance concrete. Struct Archit - Proc 1st Int Conf Struct Archit ICSA 2010 , Taylor & Francis Group, London, ISBN 978-0-415-49249-2, 1571–1578

  2. Singh N, Mithulraj M, Arya S (2018) Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: a review. Resour Conserv Recycl 138:257–271. https://doi.org/10.1016/j.resconrec.2018.07.025

    Article  Google Scholar 

  3. Fairbairn EMR, Americano BB, Cordeiro GC et al (2010) Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J Environ Manage 91(9):1864–1871. https://doi.org/10.1016/j.jenvman.2010.04.008

    Article  Google Scholar 

  4. Bahurudeen A, Marckson AV, Kishore A, Santhanam M (2014) Development of sugarcane bagasse ash based Portland pozzolana cement and evaluation of compatibility with superplasticizers. Constr Build Mater 68:465–475

    Article  Google Scholar 

  5. Aigbodion VS, Hassan SB, Ause T, Nyior GB (2010) Potential Utilization of Solid Waste (Bagasse Ash). J Miner Mater Charact Eng 09(1):67–77. https://doi.org/10.4236/jmmce.2010.91006

    Article  Google Scholar 

  6. Sharma K, Kumar A (2021) Influence of rice husk ash, lime and cement on compaction and strength properties of copper slag. Transp Geotech 27:100464. https://doi.org/10.1016/j.trgeo.2020.100464

    Article  Google Scholar 

  7. Ganesan K, Rajagopal K, Thangavel K (2007) Evaluation of bagasse ash as supplementary cementitious material. Cem Concr Compos 29(6):515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001

    Article  Google Scholar 

  8. Parra C, Valcuende M, Gómez F (2011) Splitting tensile strength and modulus of elasticity of self-compacting concrete. Constr Build Mater 25(1):201–207. https://doi.org/10.1016/j.conbuildmat.2010.06.037

    Article  Google Scholar 

  9. Nanthagopalan P, Santhanam M (2011) Cement & Concrete Composites Fresh and hardened properties of self-compacting concrete produced with manufactured sand. Cem Concr Compos 33(3):353–358. https://doi.org/10.1016/j.cemconcomp.2010.11.005

    Article  Google Scholar 

  10. Wang H, Huang W (2010) A study on the properties of fresh self-consolidating glass concrete(SCGC). Constr Build Mater 24(4):619–624. https://doi.org/10.1016/j.conbuildmat.2009.08.047

    Article  Google Scholar 

  11. Hassan AAA, Hossain KMA, Lachemi M (2010) Strength, cracking and deflection performance of large-scale self-consolidating concrete beams subjected to shear failure. Eng Struct 32(5):1262–1271. https://doi.org/10.1016/j.engstruct.2010.01.002

    Article  Google Scholar 

  12. Hassan AAA, Hossain KMA, Lachemi M (2008) Cement & concrete composites behavior of full-scale self-consolidating concrete beams in shear. Cem Concr Compos 30(7):588–596. https://doi.org/10.1016/j.cemconcomp.2008.03.005

    Article  Google Scholar 

  13. Khayat KH (1999) Workability, testing, and performance of self-consolidating concrete. ACI Mater J 96(3):346–353

    Google Scholar 

  14. Hailu B, Dinku A (2012) Application of sugarcane bagasse ash as a partial cement replacement material. J EEA 29:1–12

    Google Scholar 

  15. Jagadesh P, Ramachandramurthy A, Murugesan R (2018) Overview on properties of sugarcane bagasse ash (SCBA) as Pozzolan. Indian J Geo-Marine Sci 47(10):1934–1945

    Google Scholar 

  16. Sua-iam G, Makul N (2013) Use of high volume, untreated bagasse ash as a fine aggregate substitute for preparing self-compacting concrete. Rese Dev J 24(3):8–15. https://doi.org/10.13140/RG.2.2.18595.45603

    Article  Google Scholar 

  17. Heniegal AM, Ramadan MA, Naguib A, Agwa IS (2020) Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste. Case Stud Constr Mater 13(e00397):1–13. https://doi.org/10.1016/j.cscm.2020.e00397

    Article  Google Scholar 

  18. Xu Q, Ji T, Gao SJ et al (2018) Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials (Basel) 12(1):1–19. https://doi.org/10.3390/ma12010039

    Article  Google Scholar 

  19. Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EMR (2008) Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem Concr Compos 30:410–418. https://doi.org/10.1016/j.cemconcomp.2008.01.001

    Article  Google Scholar 

  20. Arenas-Piedrahita JC, Montes-García P, Mendoza-Rangel JM et al (2016) Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash. Constr Build Mater 105:69–81. https://doi.org/10.1016/j.conbuildmat.2015.12.047

    Article  Google Scholar 

  21. Murugesan T, Vidjeapriya R, Bahurudeen A (2020) Sugarcane Bagasse ash-blended concrete for effective resource utilization between sugar and construction industries. Sugar Tech 22:858–869. https://doi.org/10.1007/s12355-020-00794-2

    Article  Google Scholar 

  22. Cordeiro GC, Andreão PV, Tavares LM (2019) Pozzolanic properties of ultrafine sugar cane bagasse ash produced by controlled burning. Heliyon 5:1–6. https://doi.org/10.1016/j.heliyon.2019.e02566

    Article  Google Scholar 

  23. Jiménez-Quero VG, Ortiz-Guzmán M, Montes-García P (2019) Durability of mortars containing sugarcane bagasse ash. J Phys Conf Ser 1221:012004. https://doi.org/10.1088/1742-6596/1221/1/012004

    Article  Google Scholar 

  24. Jiménez-Quero VG, León-Martínez FM, Montes-García P et al (2013) Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Constr Build Mater 40:691–701. https://doi.org/10.1016/j.conbuildmat.2012.11.023

    Article  Google Scholar 

  25. Srinivasan R, Sathiya K (2010) Experimental study on Bagasse Ash in concrete. Int J Serv Learn Eng Humanit Eng Soc Entrep 5(2):60–66. https://doi.org/10.24908/ijsle.v5i2.2992

    Article  Google Scholar 

  26. Singh NB, Singh VD, Rai S (2000) Hydration of bagasse ash-blended portland cement. Cem Concr Res 30:1485–1488. https://doi.org/10.1016/S0008-8846(00)00324-0

    Article  Google Scholar 

  27. Andreão PV, Suleiman AR, Cordeiro GC, Nehdi ML (2019) Sustainable use of sugarcane bagasse ash in cement-based materials. Green Mater 7(2):61–70. https://doi.org/10.1680/jgrma.18.00016

    Article  Google Scholar 

  28. Rukzon S, Chindaprasirt P (2012) Utilization of bagasse ash in high-strength concrete. Mater Des 34:45–50. https://doi.org/10.1016/j.matdes.2011.07.045

    Article  Google Scholar 

  29. Rajasekar A, Arunachalam K, Kottaisamy M, Saraswathy V (2018) Durability characteristics of Ultra High Strength Concrete with treated sugarcane bagasse ash. Constr Build Mater 171:350–356. https://doi.org/10.1016/j.conbuildmat.2018.03.140

    Article  Google Scholar 

  30. Almeida FCR, Sales A, Moretti JP, Mendes PCD (2015) Sugarcane bagasse ash sand (SBAS): Brazilian agroindustrial by-product for use in mortar. Constr Build Mater 82:31–38. https://doi.org/10.1016/j.conbuildmat.2015.02.039

    Article  Google Scholar 

  31. Kant Sharma S, Ransinchung GDRN, Kumar P, Kumar Roy A (2017) Comparison of permeability and drying shrinkage of self compacting concrete admixed with wollastonite micro fiber and flyash. Int J Eng Trans B Appl 30(11):1681–1690. https://doi.org/10.5829/ije.2017.30.11b.08

    Article  Google Scholar 

  32. Katare VD, Madurwar MV (2017) Experimental characterization of sugarcane biomass ash: a review. Constr Build Mater 152:1–15. https://doi.org/10.1016/j.conbuildmat.2017.06.142

    Article  Google Scholar 

  33. Wang K, Shah SP, Grove J, Taylor P, Wiegand P, Steffes B, Lomboy G, Quanji Z, Gang L, Tregger N (2011) Self-consolidating concrete: applications for slip-form paving : 00011:Report.

  34. Khatun A, Singh K, Sharma R (2018) Utilization of bagasse ash as a partial replacement of cement in self-compacting concrete. Int J Civ Eng Technol 9(7):1078–1088

    Google Scholar 

  35. Sua-Iam G, Makul N (2013) Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. J Clean Prod 57:308–319. https://doi.org/10.1016/j.jclepro.2013.06.009

    Article  Google Scholar 

  36. Moretti JP, Nunes S, Sales A (2018) Self-compacting concrete incorporating sugarcane bagasse ash. Constr Build Mater 172:635–649. https://doi.org/10.1016/j.conbuildmat.2018.03.277

    Article  Google Scholar 

  37. Molin Filho RGD, Longhi DA, de Souza RCT et al (2019) Study of the compressive and tensile strenghts of self-compacting concrete with sugarcane bagasse ash. Rev IBRACON Estruturas e Mater 12(4):874–883. https://doi.org/10.1590/s1983-41952019000400009

    Article  Google Scholar 

  38. Cordeiro GC, Andreão PV, Tavares LM (2019) Pozzolanic properties of ultrafine sugar cane bagasse ash produced by controlled burning. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02566

    Article  Google Scholar 

  39. Modani PO, Vyawahare MR (2013) Utilization of bagasse ash as a partial replacement of fine aggregate in concrete. Procedia Eng 51:25–29. https://doi.org/10.1016/j.proeng.2013.01.007

    Article  Google Scholar 

  40. Le DH, Sheen YN, Lam MNT (2018) Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. Constr Build Mater 185:138–147. https://doi.org/10.1016/j.conbuildmat.2018.07.029

    Article  Google Scholar 

  41. Kumar A, Chhotu AK, Omar PJ, Ansari GA (2019) Utilization of sugarcane bagasse ash with fly ash as alternative fillers in bituminous concrete. Int J Eng Adv Technol 8(6):4275–4279. https://doi.org/10.35940/ijeat.F9139.088619

    Article  Google Scholar 

  42. Kowsik R, Jayanthi S (2015) Durability study of bagasse ash and silicafume based hollow concrete block for lean mix. Int J Appl Environ Sci 10(1):395–407

    Google Scholar 

  43. Andreão PV, Suleiman AR, Cordeiro GC, Nehdi ML (2020) Beneficiation of sugarcane bagasse ash: pozzolanic activity and leaching behavior. Waste Biomass Valorization 11:4393–4402. https://doi.org/10.1007/s12649-019-00721-x

    Article  Google Scholar 

  44. Shafiq N, Hussein AAE, Nuruddin MF, Al Mattarneh H (2018) Effects of sugarcane bagasse ash on the properties of concrete. Proc Inst Civ Eng Eng Sustain 171(3):123–132. https://doi.org/10.1680/jensu.15.00014

    Article  Google Scholar 

  45. Arif E, Clark MW, Lake N (2017) Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete. Constr Build Mater 151:692–703. https://doi.org/10.1016/j.conbuildmat.2017.06.136

    Article  Google Scholar 

  46. Zareei SA, Ameri F, Bahrami N (2018) Microstructure, strength, and durability of eco-friendly concretes containing sugarcane bagasse ash. Constr Build Mater 184:258–268. https://doi.org/10.1016/j.conbuildmat.2018.06.153

    Article  Google Scholar 

  47. Loganayagan S, Chandra Mohan N, Dhivyabharathi S (2020), Sugarcane bagasse ash as alternate supplementary cementitious material in concrete. Mater Today Proc (In press) 3–6. https://doi.org/10.1016/j.matpr.2020.03.060

  48. Aina Misnon N, Siti Khadijah Che Osmi, Husen H, Hanim Khairuddin F (2018) Mechanical properties of concrete with activated sugarcane bagasse ashes as cement replacement. Int J Eng Technol 7(4.33): 307–311.

  49. Batool F, Masood A, Ali M (2020) Characterization of sugarcane bagasse ash as pozzolan and influence on concrete properties. Arab J Sci Eng 45:3891–3900. https://doi.org/10.1007/s13369-019-04301-y

    Article  Google Scholar 

  50. Mangi SA, Jamaluddin N, Wan Ibrahim MH et al (2017) Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. IOP Conf Ser Mater Sci Eng 271:1–8. https://doi.org/10.1088/1757-899X/271/1/012001

    Article  Google Scholar 

  51. Setayesh Gar P, Suresh N, Bindiganavile V (2017) Sugar cane bagasse ash as a pozzolanic admixture in concrete for resistance to sustained elevated temperatures. Constr Build Mater 153:929–936. https://doi.org/10.1016/j.conbuildmat.2017.07.107

    Article  Google Scholar 

  52. Sri Ravindrarajah R (2013) High-strength self-compacting concrete for sustainable construction. From Mater to Struct Adv Through Innov - Proc 22nd Australas Conf Mech Struct Mater ACMSM 2012: 1021–1025. https://doi.org/10.1201/b15320-182

  53. Dinakar P, Manu SN (2014) Concrete mix design for high strength self-compacting concrete using metakaolin. Mater Des 60:661–668. https://doi.org/10.1016/j.matdes.2014.03.053

    Article  Google Scholar 

  54. Singh NT (2016) Effective uses of light weight concrete. J Civ Eng Environ Technol 3(3):208–211

    Google Scholar 

  55. Sachin Prabhu P, Nishaant HA, Anand T (2018) Behaviour of self-compacting concrete with cement replacement materials. Int J Innov Technol Explor Eng 8(2S):360–363

    Google Scholar 

  56. Bauchkar SD, Chore HS. Roller compacted concrete : a litrature review. IOSR J Mech Civ Eng 4:28–32. Proceedings of 2nd International Conference on Emerging Trends in Engineering, J.J. Magdum College of Engineering, Jaysinghpur, (Maharashtra) , India. (ISOR-JMCE) (ISSN: 2278-0661, ISBN: 2278-8727)

  57. Akram T, Memon SA, Obaid H (2009) Production of low cost self compacting concrete using bagasse ash. Constr Build Mater 23(2):703–712. https://doi.org/10.1016/j.conbuildmat.2008.02.012

    Article  Google Scholar 

  58. Larissa LC, Marcos MA, Maria MV et al (2020) Effect of high temperatures on self-compacting concrete with high levels of sugarcane bagasse ash and metakaolin. Constr Build Mater 248(118715):1–17. https://doi.org/10.1016/j.conbuildmat.2020.118715

    Article  Google Scholar 

  59. Manjunath R, Rahul M (2019) Studies on fresh and hardened properties of sugarcane bagasse ash blended self-compacting concrete mixes. In: Das B, Neithalath N (eds) Sustainable construction and building materials. Lecture Notes in Civil Engineering, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-13-3317-0_24

  60. Iqbal S, Irshad M, Room S, et al (2020) Performance evaluation of self-compacting concrete using bagasse ash and granite as partial replacement of cement and sand, 25:1–8.

  61. Joshaghani A (2017) Workability retention and mechanical properties of self-compacting concrete (SCC) with Sugar Cane Bagasse Ash (SCBA) and rice husk ash (RHA). Nova Science Publishers: New York, NY, USA, 2017, pp 233–258

  62. Bonen D, Shah SP (2005) Fresh and hardened properties of self-consolidating concrete. Prog Struct Engng Mater 7(1):14–26. https://doi.org/10.1002/pse.186

    Article  Google Scholar 

  63. Lomboy GR, Wang K, Taylor P, Shah SP (2012) Guidelines for design, testing, production and construction of semi-flowable SCC for slip-form paving. Int J Pavement Eng 13(3):216–225. https://doi.org/10.1080/10298436.2011.610797

    Article  Google Scholar 

  64. Voigt T, Mbele J-J, Wang K, Shah SP (2010) Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement. J Mater Civ Eng 22(2):196–206. https://doi.org/10.1061/(asce)0899-1561(2010)22:2(196)

    Article  Google Scholar 

  65. Shah SP, Lomboy GR (2014) Future research needs in self-consolidating concrete. J Sustain Cem Mater 4(3–4):154–163. https://doi.org/10.1080/21650373.2014.956238

    Article  Google Scholar 

  66. Lomboy GR, Wang K (2015) Semi-flowable self-consolidating concrete and its application. Int J Mater Struct Integr. 9(1/2/3):61–71. https://doi.org/10.1504/IJMSI.2015.071110

  67. Fatima E, Jhamb A, Kumar R (2013) Ceramic dust as construction material in rigid pavement. Am J Civ Eng Archit 1(5):112–116. https://doi.org/10.12691/ajcea-1-5-5

  68. Chore HS, Joshi MP (2020) Strength characterization of concrete using industrial waste as cement replacing materials for rigid pavement. Innov Infrastruct Solut 5(78):1–9. https://doi.org/10.1007/s41062-020-00328-5

    Article  Google Scholar 

  69. Bauchkar SD, Chore HS (2014) Self consolidating concrete containing different mineral admixtures (with Mumbai Crushed Sand Rheological properties as fine aggregate). In: Proceeding 3rd international conference on quality up-gradation in engineering, Science & Technology (IC-QUEST 2014); B.D.C.E. Sewagram, Wardha, (Maharashtra), April 19

  70. Bauchkar SD, Chore HS, Mukherjee SK (2017) Rheological properties of smart dynamic concrete (SDC) containing different supplementary cementitious materials. J Struct Eng 44:586–597

    Google Scholar 

  71. Bauchkar SD, Chore HS (2018) Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete. Adv Concr Constr 6(6):561–583. https://doi.org/10.12989/acc.2018.6.6.561

  72. Ferraris CF, Obla KH, Hill R (2001) The influence of mineral admixtures on the rheology of cement paste and concrete. Cem Concr Res 31(2):245–255. https://doi.org/10.1016/S0008-8846(00)00454-3

    Article  Google Scholar 

Download references

Funding

The paper is a part of the research project being funded by Dr. B.R. Ambedkar National Institute of Technology Jalandhar through TEQIP-III.

Author information

Authors and Affiliations

Authors

Contributions

The draft of the manuscript is prepared by BK and HSC. Both the authors read the manuscript and approved the same.

Corresponding author

Correspondence to Hemant S. Chore.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannur, B., Chore, H.S. Utilization of sugarcane bagasse ash as cement-replacing materials for concrete pavement: an overview. Innov. Infrastruct. Solut. 6, 184 (2021). https://doi.org/10.1007/s41062-021-00539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00539-4

Keywords

Navigation