Skip to main content
Log in

Effect of montmorillonite nanoclay and sulphur-modified blends on the properties of bituminous mixes

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This study compares the performance of asphalt mixtures using montmorillonite (MMT) nanoclay and sulphur as a modifier. The head sight of this study is to characterize the physical and strength characteristics of MMT nanoclay and sulphur-modified asphalt binders. In the experimental testing, MMT nanoclay (2,4,6,8) %, sulphur (2,4,6,8) %, and MMT nanoclay–sulphur composite (2,4,6,8) % by weight of asphalt binder were blended. Thereafter, the influence of selected modifiers on the physical properties, strength characterization, and moisture damage was evaluated. The addition of modifiers decreased the penetration value, whereas there was a considerable increase in the softening point. Among all the modifiers, maximum stability value of 34.17 kN has been reported by adding 4% of MMT nanoclay and sulphur in combined form, i.e., 2% MMT nanoclay and 2% sulphur as a composite (50:50), which is 2.8 times the stability of neat asphalt mix at optimum binder content (OBC). MMT nanoclay–sulphur composite has been the most effective blend in improving moisture susceptibility, as tensile strength ratio (TSR) values were relatively greater than 90%. Overall, the addition of MMT nanoclay, S, MMT nanoclay–sulphur composite would improve the resistance against cracking and reduces the moisture damage potential at all the test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig14

Similar content being viewed by others

Data Availability

All the related data are provided in the present study.

References

  1. Bitumen S (1995) The shell bitumen industrial handbook. Shell Bitumen, Chertsey Surrey

    Google Scholar 

  2. Airey GD (2002) Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Constr Build Mater 16:473–487. https://doi.org/10.1016/S0950-0618(02)00103-4

    Article  Google Scholar 

  3. Airey G, Rahimzadeh B, Collop A (2003) Linear viscoelastic performance of asphaltic materials. Road Mater Pavement Des 4:269–292. https://doi.org/10.1080/14680629.2003.9689949

    Article  Google Scholar 

  4. Isacsson U, Lu X (1995) Testing and appraisal of polymer modified road bitumens—state of the art. Mater Struct 28:139–159. https://doi.org/10.1007/BF02473221

    Article  Google Scholar 

  5. Saboo N, Kumar P (2016) Optimum blending requirements for EVA modified binder. Transp Res Procedia 17:98–106. https://doi.org/10.1016/J.TRPRO.2016.11.065

    Article  Google Scholar 

  6. Pamplona TF, Amoni DC, B, De Alencar AE V., et al (2012) Asphalt binders modified by SBS and SBS/nanoclays: effect on rheological properties. J Braz Chem Soc 23:639–647. https://doi.org/10.1590/s0103-50532012000400008

    Article  Google Scholar 

  7. Saboo N, Sukhija M (2020) Evaluating the suitability of nanoclay-modified asphalt binders from 10°C to 70°C. J Mater Civ 32(12):04020393

    Article  Google Scholar 

  8. Saboo N, Sukhija M (2021) Effect of analysis procedures in linear amplitude sweep test on the fatigue resistance of nanoclay-modified asphalt binders.J Mater Civ 33 (1):04020417

    Article  Google Scholar 

  9. Gawel I (2000) Chapter 19 sulphur-modified asphalts. Dev Pet Sci 40:515–535

    Google Scholar 

  10. Ezzat H, El-Badawy S, Gabr A et al (2016) Evaluation of asphalt binders modified with nanoclay and nanosilica. Procedia Eng 143:1260–1267. https://doi.org/10.1016/j.proeng.2016.06.119

    Article  Google Scholar 

  11. Zare-shahabadi A, Shokuhfar A, Ebrahimi-nejad S (2010) Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles. Constr Build Mater 24:1239–1244. https://doi.org/10.1016/j.conbuildmat.2009.12.013

    Article  Google Scholar 

  12. Liu G, Van De VM, Wu S et al (2011) Influence of organo-montmorillonites on fatigue properties of bitumen and mortar. Int J Fatigue 33:1574–1582. https://doi.org/10.1016/j.ijfatigue.2011.06.014

    Article  Google Scholar 

  13. Yao H, You Z, Li L et al (2015) Evaluation of asphalt blended with low percentage of carbon micro-fiber and nanoclay. J Test Eval. https://doi.org/10.1520/JTE20120068

    Article  Google Scholar 

  14. Saboo N, Sukhija M, Singh G (2021) Effect of nanoclay on physical and rheological properties of waste cooking oil-modified asphalt binder. J Mater Civ 33 (3):04020490

    Article  Google Scholar 

  15. Ashish PK, Singh D, Bohm S (2017) Investigation on influence of nanoclay addition on rheological performance of asphalt binder. Road Mater Pavement Des 18:1007–1026. https://doi.org/10.1080/14680629.2016.1201522

    Article  Google Scholar 

  16. Golestani B, Hyun B, Moghadas F, Fallah S (2015) Nanoclay application to asphalt concrete : characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Constr Build Mater 91:32–38. https://doi.org/10.1016/j.conbuildmat.2015.05.019

    Article  Google Scholar 

  17. Beall GW, Powell CE (2011) Fundamentals of polymer-clay nanocomposites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Lan T (1994) Clay-reinforced epoxy. pp 2216–2219

  19. Ghile DB (2006) Effects of nanoclay modification on rheology of bitumen and on performance of asphalt mixtures. Master of Science, Thesis. https://resolver.tudelft.nl/uuid:e92ae692-10e5-455d-b8ad-0eff3702071e

    Google Scholar 

  20. Jahromi SG, Rajaee S (2013) Nanoclay-modified asphalt mixtures for eco-efficient construction. In: Nanotechnology in eco-efficient construction: materials, processes and applications. Elsevier Ltd, pp 108–126. https://www.sciencedirect.com/science/article/pii/B9780857095442500063#:~:text=Nanoclay%20is%20an%20active%20filler,mixture%2C%20the%20optimum%20binder%20increased.

  21. Iskender E (2016) Evaluation of mechanical properties of nano-clay modified asphalt mixtures. Meas J Int Meas Confed 93:359–371. https://doi.org/10.1016/j.measurement.2016.07.045

    Article  Google Scholar 

  22. Ashish PK, Singh D, Bohm S (2016) Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder. Constr Build Mater 113:341–350. https://doi.org/10.1016/j.conbuildmat.2016.03.057

    Article  Google Scholar 

  23. Kumar P, Khan MT (2013) Evaluation of physical properties of sulphur modified bitumen and its resistance to ageing. Elixir Chem Eng A 55:13104–13107

    Google Scholar 

  24. Fritschy G, Papirer E, Chambu C (1981) Sulfur modified bitumen: a new binder. Rheol Acta 20:78–84. https://doi.org/10.1007/BF01517475

    Article  Google Scholar 

  25. Saboo N (2014) Rheological investigations of sulfur modified bitumen. pp 703–713. https://www.researchgate.net/publication/294609596_Rheological_Investigations_of_Sulfur_Modified_Bitumen

  26. Gedik A, Lav AH (2013) Sulphur utilization in asphaltic concrete pavements. Airfield and highway pavement 2013. American Society of Civil Engineers, Reston, VA, pp 1175–1191

    Chapter  Google Scholar 

  27. Lee D, ylnn, (1975) Modification of asphalt and asphalt paving mixtures by sulfur additives. Ind Eng Chem Prod Res Dev 14:171–177. https://doi.org/10.1021/i360055a009

    Article  Google Scholar 

  28. Faramarzi M, Golestani B, Lee KW (2017) Improving moisture sensitivity and mechanical properties of sulfur extended asphalt mixture by nano-antistripping agent. Constr Build Mater 133:534–542. https://doi.org/10.1016/j.conbuildmat.2016.12.038

    Article  Google Scholar 

  29. Souaya ER, Elkholy SA, El-Rahman AMMA et al (2015) Partial substitution of asphalt pavement with modified sulfur. Egypt J Pet 24:483–491. https://doi.org/10.1016/j.ejpe.2015.06.003

    Article  Google Scholar 

  30. IRC (2013) Ministry of Road Transport & Highways- 5th REVISION. Indian Road Congress, New Delhi, India

    Google Scholar 

  31. Indian standard (2006) IS 73:2006 Paving bitumen- specification- Third revision

  32. Nguyen VH, Le VP (2019) Performance evaluation of sulfur as alternative binder additive for asphalt mixtures. Int J Pavement Res Technol 12:380–387. https://doi.org/10.1007/s42947-019-0045-9

    Article  Google Scholar 

  33. Das AK, Panda M (2017) Investigation on rheological performance of sulphur modified bitumen (SMB) binders. Constr Build Mater 149:724–732. https://doi.org/10.1016/j.conbuildmat.2017.05.198

    Article  Google Scholar 

  34. Standards B, of I, (1978) IS 1203: 1978: methods for testing tar and bituminous materials. Penetration test, New Delhi

    Google Scholar 

  35. Standards B, of I, (1978) IS 1205: 1978: methods for testing tar and bituminous materials. Softening Point Test, New Delhi

    Google Scholar 

  36. IS IS 15462: Polymer and rubber modified bitumen : Bureau of Indian Standards : Free Download, Borrow, and Streaming : InteArchive

  37. Kandhal PS (2016) bituminous road construction in india. Prentice-hall of India. https://books.google.co.in/books/about/BITUMINOUS_ROAD_CONSTRUCTION_IN_INDIA.html?id=VSavDAAAQBAJ&redir_esc=y

  38. Airey GD, Collop AC (2016) Mechanical and structural assessment of laboratory- and field-compacted asphalt mixtures. Int J Pavement Eng 17:50–63. https://doi.org/10.1080/10298436.2014.925551

    Article  Google Scholar 

  39. Choudhary J, Kumar B, Gupta A (2018) Effect of filler on the bitumen-aggregate adhesion in asphalt mix. Int J Pavement Eng. https://doi.org/10.1080/10298436.2018.1549325

    Article  Google Scholar 

  40. Hunter AE, Airey GD, Collop AC (2004) Aggregate orientation and segregation in laboratory-compacted asphalt samples. Transp Res Rec J Transp Res Board 1891:8–15. https://doi.org/10.3141/1891-02

    Article  Google Scholar 

  41. Chen H, Xu Q, Chen S, Zhang Z (2009) Evaluation and design of fiber-reinforced asphalt mixtures. Mater Des 30:2595–2603. https://doi.org/10.1016/j.matdes.2008.09.030

    Article  Google Scholar 

  42. Ogundipe OM (2016) Marshall stability and flow of lime-modified asphalt concrete. Transp Res Proc 14:685–693

    Article  Google Scholar 

  43. MS-2 (2014) Asphalt Mix Design Methods (7th edition), published by Asphalt Institute

  44. ASTM A (2015) D6927–15 standard test method for marshall stability and flow of asphalt mixtures

  45. IRC Irc-111–2009 dense-graded-bituminous mix

  46. ASTM 6931 (2017) ASTM D6931–17: Standard test method for indirect tensile (IDT) strength of asphalt mixtures

  47. Choudhary J, Kumar B, Gupta A (2019) Performance evaluation of bauxite residue modified asphalt concrete mixes. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2019.1691662

    Article  Google Scholar 

  48. Choudhary J, Kumar B, Gupta A (2020) Analysis and comparison of asphalt mixes containing waste fillers using a novel ranking methodology. J Mater Civ Eng 32:04020064. https://doi.org/10.1061/(asce)mt.1943-5533.0003137

    Article  Google Scholar 

  49. Si W, Li N, Ma B et al (2016) Temperature response to tensile characteristics of the hot asphalt mixtures. KSCE J Civ Eng 20:1336–1346. https://doi.org/10.1007/s12205-015-0688-2

    Article  Google Scholar 

  50. Bennert T, Haas E, Wass E (2018) Indirect tensile test (IDT) to determine asphalt mixture performance indicators during quality control testing in New Jersey. Transp Res Rec J Transp Res Board 2672:394–403. https://doi.org/10.1177/0361198118793276

    Article  Google Scholar 

  51. AASHTO T 283 (2014) AASHTO T 283 - Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. Vol. 9

  52. Do TC, Tran VP, Le VP et al (2019) Mechanical characteristics of tensile strength ratio method compared to other parameters used for moisture susceptibility evaluation of asphalt mixtures. J Traffic Transp Eng. https://doi.org/10.1016/j.jtte.2018.01.009

    Article  Google Scholar 

  53. Oroujzadeh N, Sabbagh H (2017) Increasing the durability of asphalt mixture against moisture: a case study in Iran. Indian J Sci Technol 10:1–6

    Article  Google Scholar 

  54. Pan P, Kuang Y, Hu X, Zhang X (2018) A comprehensive evaluation of rejuvenator on mechanical properties, durability, and dynamic characteristics of artificially aged asphalt mixture. Materials (Basel). https://doi.org/10.3390/ma11091554

    Article  Google Scholar 

  55. Chen Z, Yi J, Chen Z, Feng D (2019) Properties of asphalt binder modified by corn stalk fiber. Constr Build Mater 212:225–235. https://doi.org/10.1016/j.conbuildmat.2019.03.329

    Article  Google Scholar 

  56. Zhang J, Yang F, Pei J et al (2015) Viscosity-temperature characteristics of warm mix asphalt binder with Sasobit®. Constr Build Mater 78:34–39. https://doi.org/10.1016/j.conbuildmat.2014.12.123

    Article  Google Scholar 

  57. Das AK (2014) Engineering characterization of sulphur modified bituminous, Thesis: Master of Technology. NIT, Rourkela

  58. Jahromi SG, Khodaii A (2009) Effects of nanoclay on rheological properties of bitumen binder. Constr Build Mater 23:2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027

    Article  Google Scholar 

  59. Al-Omari AA, Khedaywi TS, Khasawneh MA (2018) Laboratory characterization of asphalt binders modified with waste vegetable oil using SuperPave specifications. Int J Pavement Res Technol 11:68–76. https://doi.org/10.1016/j.ijprt.2017.09.004

    Article  Google Scholar 

  60. Remišová E, Holý M (2017) Changes of Properties of Bitumen Binders by Additives Application. IOP Conference Series Materials Science and Engineering. 245:032003

    Article  Google Scholar 

  61. Abed YH, Abedali Al-Haddad AH (2020) Temperature Susceptibility of Modified Asphalt Binders. IOP Conf Ser Mater Sci Eng 671:012121

    Article  Google Scholar 

  62. Sridhar R, Kamaraj C, Bose S et al (2007) Effect of gradation and compactive effort on the properties of dense bituminous macadam mixes. J Sci Ind Res (India) 66:56–59

    Google Scholar 

  63. Panda M, Mazumdar M (2002) Utilization of reclaimed polyethylene in bituminous paving mixes. J Mater Civ Eng 14:527–530. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(527)

    Article  Google Scholar 

  64. Al-Khateeb GG, Irfaeya MF, Khedaywi TS (2017) A new simplified micromechanical model for asphalt mastic behavior. Constr Build Mater 149:587–598. https://doi.org/10.1016/j.conbuildmat.2017.05.129

    Article  Google Scholar 

  65. Specifications of Road Bridge Works (5th Revision), published by Ministry of Road Transport and Highways in (2013)

  66. IRC SP 053: Guidelines on the use of modified bitumen in road construction (Second Revision), Published by Indian Road Congress in (2010)

  67. Goh SW, Akin M, You Z, Shi X (2011) Effect of deicing solutions on the tensile strength of micro- or nano-modified asphalt mixture. Constr Build Mater 25:195–200. https://doi.org/10.1016/j.conbuildmat.2010.06.038

    Article  Google Scholar 

  68. Martinho FCG, Farinha JPS (2019) An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances. Road Mater Pavement Des 20:671–701. https://doi.org/10.1080/14680629.2017.1408482

    Article  Google Scholar 

Download references

Funding

No funding information is available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Sukhija.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

vivek, A., Sukhija, M. & Singh, K.L. Effect of montmorillonite nanoclay and sulphur-modified blends on the properties of bituminous mixes. Innov. Infrastruct. Solut. 6, 119 (2021). https://doi.org/10.1007/s41062-021-00484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00484-2

Keywords

Navigation