Skip to main content

Advertisement

Log in

High-temperature performance of ambient-cured alkali-activated binder concrete

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Owing to their lower carbon footprint and efficient performance compared to portland cement (PC), alkali-activated binders (AAB) show promising potential as an alternative to PC. The present paper investigates the high-temperature performance of AAB concrete through compressive and bond strength tests. Four different AAB concrete mixes with varying proportions of fly ash: slag (100:0, 70:30, 60:40, and 50:50) cured under ambient conditions are exposed to elevated temperatures. The mechanical performance of AAB concrete is corroborated with microstructural changes. The results show that AAB concrete with fly ash: slag ratio of 70:30 exhibits the best mechanical performance after exposure to elevated temperatures. This behaviour is attributed to the growth of new crystalline phases of akermanite and gehlenite as observed from the X-ray diffraction patterns. This study shows that there is an optimum proportion of slag content beyond which the mechanical performance of AAB concrete significantly deteriorates when exposed to elevated temperatures. The failure pattern of AAB concrete during the bond strength test varies with the precursor proportion and the exposure condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Gebregziabiher BS, Thomas R, Peethamparan S (2015) Very early-age reaction kinetics and microstructural development in alkali activated slag. Cem Concr Compo 55:91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001

    Article  Google Scholar 

  2. Fernández-Jiménez A, García-Lodeiro I, Palomo A (2007) Durability of alkali-activated fly ash cementitious materials. J Mater Sci 42(9):3055–3065. https://doi.org/10.1007/s10853-006-0584-8

    Article  Google Scholar 

  3. Ravikumar D, Neithalath N (2013) Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cem Concr Res 47:31–42. https://doi.org/10.1016/j.cemconres.2013.01.007

    Article  Google Scholar 

  4. García-Lodeiro I, Palomo A, Fernández-Jiménez A (2007) Alkali-aggregate reaction in activated fly ash systems. Cem Concr Res 37(2):175–183. https://doi.org/10.1016/j.cemconres.2006.11.002

    Article  Google Scholar 

  5. Ali AM, Sanjayan J, Guerrieri M (2017) Performance of geopolymer high strength concrete wall panels and cylinders when exposed to a hydrocarbon fire. Constr Build Mater 137:195–207. https://doi.org/10.1016/j.conbuildmat.2017.01.099

    Article  Google Scholar 

  6. Khoury GA (2000) Effect of fire on concrete and concrete structures. Prog Struct Eng Mat 2(4):429–447. https://doi.org/10.1002/pse.51

    Article  Google Scholar 

  7. Rashad AM, Zeedan SR (2011) The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater 25(7):3098–3107. https://doi.org/10.1016/j.conbuildmat.2010.12.044

    Article  Google Scholar 

  8. Fernández-Jiménez A, Pastor JY, Martín A, Palomo A (2010) High-Temperature Resistance in Alkali-Activated Cement. J Am Ceram Soc 93(10):3411–3417. https://doi.org/10.1111/j.1551-2916.2010.03887.x

    Article  Google Scholar 

  9. Martin A, Pastor JY, Palomo A, Jiménez AF (2015) Mechanical behaviour at high temperature of alkali activated aluminosilicates (geopolymers). Constr Build Mater 93:1188–1196. https://doi.org/10.1016/j.conbuildmat.2015.04.044

    Article  Google Scholar 

  10. Guerrieri M, Sanjayan JG (2010) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire Mater 34(4):163–175. https://doi.org/10.1002/fam.1014

    Article  Google Scholar 

  11. Pan Z, Sanjayan JG, Rangan BV (2009) An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature. J Mater Sci 44(7):1873–1880. https://doi.org/10.1007/s10853-009-3243-z

    Article  Google Scholar 

  12. Rivera OG, Long WR, Weiss CA Jr, Moser RD, Williams BA, Torres-Cancel K, Gore ER, Allison PG (2016) Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cem Concr Res 90:43–51. https://doi.org/10.1016/j.cemconres.2016.09.013

    Article  Google Scholar 

  13. Zhao R, Sanjayan JG (2011) Geopolymer and Portland cement concretes in simulated fire. Mag Concr Res 63:163–173. https://doi.org/10.1680/macr.9.00110

    Article  Google Scholar 

  14. Rickard WDA, Temuujin J, van Riessen A (2012) Thermal analysis of geopolymer pastes synthesized from five fly ashes of variable composition. J Non-Cryst solids 358(15):1830–1839. https://doi.org/10.1016/j.jnoncrysol.2012.05.032

    Article  Google Scholar 

  15. Li YL, Zhao XL, Raman RS, Al-Saadi S (2018) Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilizing seawater and sea sand. Constr Build Mater 159:704–724. https://doi.org/10.1016/j.conbuildmat.2017.10.104

    Article  Google Scholar 

  16. Mohabbi Yadollahi M, Dener M (2019) Investigation of elevated temperature on compressive strength and microstructure of alkali activated slag based cements. Eur J Environ Civil Eng: 1–15 https://doi.org/10.1080/19648189.2018.1557562

  17. Kong DL, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40:334–339. https://doi.org/10.1016/j.cemconres.2009.10.017

    Article  Google Scholar 

  18. Kong DLY, Sanjayan JG, Sagoe-Crentsil K (2008) Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. J Mater Sci 43(3):824–831. https://doi.org/10.1007/s10853-007-2205-6

    Article  Google Scholar 

  19. Adak D, Sarkar M, Mandal S (2017) Structural performance of nano-silica modified fly ash based geopolymer concrete. Constr Build Mater 135:430–439. https://doi.org/10.1016/j.conbuildmat.2016.12.111

    Article  Google Scholar 

  20. Sarker PK (2011) Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete. Mater Struct 44(5):1021–1030. https://doi.org/10.1617/s11527-010-9683-8

    Article  Google Scholar 

  21. Castel A, Foster SJ (2015) Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement. Cem Concr Res 72:48–53. https://doi.org/10.1016/j.cemconres.2015.02.016

    Article  Google Scholar 

  22. Sofi M, van Deventer JSJ, Mendis PA, Lukey GC (2007) Bond performance of reinforcing bars in inorganic polymer concrete (IPC). J Mater Sci 42(9): 3107 3116 https://doi.org/10.1007/s10853-006-0534-5

  23. Dewi ES, Ekaputri JJ (2017) The influence of plain bar on bond strength of geopolymer concrete. AIP Conf Proc, AIP Publ 1855(1):030017. https://doi.org/10.1063/1.4985487

    Article  Google Scholar 

  24. Fernandez-Jimenez AM, Palomo A, Lopez-Hombrados C (2006) Engineering properties of alkali-activated fly ash concrete. ACI Mater J 103(2):106–112

    Google Scholar 

  25. Al-Azzawi M, Yu T, Hadi MN (2018) Factors Affecting the Bond Strength Between the Fly Ash-based Geopolymer Concrete and Steel Reinforcement. Structures 14:262–272. https://doi.org/10.1016/j.istruc.2018.03.010

    Article  Google Scholar 

  26. Zhang HY, Kodur V, Wu B, Yan J, Yuan ZS (2018) Effect of temperature on bond characteristics of geopolymer concrete. Constr Build Mater 163:277–285. https://doi.org/10.1016/j.conbuildmat.2017.12.043

    Article  Google Scholar 

  27. Ramagiri KK, Kar A (2019) Effect of precursor combination and elevated temperatures on the microstructure of alkali-activated binder. ICJ 93(10):34–43

    Google Scholar 

  28. ASTM C618–19 (2019) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0618-19

  29. ASTM C989/C989M-18a (2018) Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0989_C0989M-18A

  30. IS 383:2016 (2016) Coarse and Fine Aggregate for Concrete–Specification, Bureau of Indian Standards, New Delhi

  31. Kar A, Halabe UB, Ray I, Unnikrishnan A (2013) Nondestructive characterizations of alkali activated fly ash and/or slag concrete. Eur Sci J 9(24):52–74. https://doi.org/10.19044/esj.2013.v9n24p%25p

    Google Scholar 

  32. El-Hassan H, Ismail N (2018) Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J Sust Cem Based Mat 7(2):122–140. https://doi.org/10.1080/21650373.2017.1411296

    Article  Google Scholar 

  33. El-Hassan H, Shehab E, Al-Sallamin A (2018) Influence of different curing regimes on the performance and microstructure of alkali-activated slag concrete. J Mater Civ Eng 30(9):04018230. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002436

    Article  Google Scholar 

  34. Ismail I, Bernal SA, Provis JL, Hamdan S, van Deventer JS (2013) Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct 46(3):361–373. https://doi.org/10.1617/s11527-012-9906-2

    Article  Google Scholar 

  35. ASTM E119-16 (2016) Standard Test Methods for Fire Tests of Building Construction and Materials. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E0119-16

  36. Park SM, Jang JG, Lee NK, Lee HK (2016) Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cem Concr Res 89:72–79. https://doi.org/10.1016/j.cemconres.2016.08.004

    Article  Google Scholar 

  37. Sarker PK, Kelly S, Yao Z (2014) Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des 63:584–592. https://doi.org/10.1016/j.matdes.2014.06.059

    Article  Google Scholar 

  38. ASTM C39/C39M-11 (2011) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0039_C0039M-11

  39. IS 2770 (1967) (Reaffirmed Year: 2017 ) Methods of testing bond in reinforced concrete, Part 1: Pull-out test, Bureau of Indian Standards, New Delhi

  40. Kumar S, Kumar R, Mehrotra SP (2010) Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci 45(3):607–615. https://doi.org/10.1007/s10853-009-3934-5

    Article  Google Scholar 

  41. Fang G, Ho WK, Tu W, Zhang M (2018) Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr Build Mater 172:476–487. https://doi.org/10.1016/j.conbuildmat.2018.04.008

    Article  Google Scholar 

  42. Shaikh FUA (2018) Effects of slag content on the residual mechanical properties of ambient air-cured geopolymers exposed to elevated temperatures. J Asian Ceram Soc 6(4):342–358. https://doi.org/10.1080/21870764.2018.1529013

    Article  Google Scholar 

  43. Junaid MT, Kayali O, Khennane A (2017) Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures. Mater Struct 50(1):50. https://doi.org/10.1617/s11527-016-0877-6

    Article  Google Scholar 

  44. Kalifa P, Menneteau FD, Quenard D (2000) Spalling and pore pressure in HPC at high temperatures. Cem Concr Res 30(12):1915–1927. https://doi.org/10.1016/S0008-8846(00)00384-7

    Article  Google Scholar 

  45. Provis JL, van Deventer JSJ (eds) (2009) Geopolymers: structures, processing, properties and industrial applications. CRC Press, Cambridge, UK

    Google Scholar 

  46. Zuda L, Pavlík Z, Rovnaníková P, Bayer P, Černý R (2006) Properties of alkali activated aluminosilicate material after thermal load. Int J Thermophys 27(4):1250–1263. https://doi.org/10.1007/s10765-006-0077-7

    Article  Google Scholar 

  47. Kong DL, Sanjayan JG, Sagoe-Crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res 37(12):1583–1589. https://doi.org/10.1016/j.cemconres.2007.08.021

    Article  Google Scholar 

  48. Fang G, Zhang M (2020) The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete. Cem Concr Res 129:105963. https://doi.org/10.1016/j.cemconres.2019.105963

    Article  Google Scholar 

  49. Hertz K (1982) The anchorage capacity of reinforcing bars at normal and high temperatures. Mag Concr Res 34(121):213–220. https://doi.org/10.1680/macr.1982.34.121.213

    Article  Google Scholar 

  50. Pothisiri T, Panedpojaman P (2012) Modeling of bonding between steel rebar and concrete at elevated temperatures. Constr Build Mater 27(1):130–140. https://doi.org/10.1016/j.conbuildmat.2011.08.014

    Article  Google Scholar 

  51. Willam K, Xi Y, Lee K, Kim B (2009) Thermal response of reinforced concrete structures in nuclear power plants. A report submitted at College of Engineering and Applied Science, University of Colorado at Boulder.

Download references

Acknowledgements

The authors would like to acknowledge the central analytical laboratory facilities at BITS Pilani, Hyderabad campus for providing the necessary setup to conduct XRD, FTIR, and SEM-EDS analyses.

Funding

This study is sponsored by BITS Pilani, Hyderabad campus through Outstanding Potential for Excellence in Research and Academics (OPERA) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kruthi Kiran Ramagiri.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Availability of data and material

All the required data are available in the manuscript, and all the raw data are available upon request in MS-Excel format.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramagiri, K.K., Chauhan, D.R., Gupta, S. et al. High-temperature performance of ambient-cured alkali-activated binder concrete. Innov. Infrastruct. Solut. 6, 71 (2021). https://doi.org/10.1007/s41062-020-00448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-020-00448-y

Keywords

Navigation