Skip to main content

Advertisement

Log in

Reliability analysis of settlement of pile group

  • Technical note
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Considering the highly variable nature of soil, reliability analysis of pile foundation is being explored in the modern scientific era. The paper investigates the application of relevance vector machines (RVM), generalized regression neural network (GRNN), genetic programming (GP) and adaptive-network-based fuzzy inference (ANFIS) in reliability analysis of settlement of pile group. The simulation is checked using Monte Carlo simulation (M-C). The performance of models is ascertained using various performance parameters and Taylor diagrams. The normality and homogeneity in performance of the models is tested by carrying out Anderson–Darling (AD) test and Mann–Whitney U (M–W) test, respectively. The paper concludes that the performance of RVM, GP and ANFIS were excellent while that of GRNN was poor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Casagrande A (1965) Civil engineering database. Role of the calculated risk in earthwork and foundation engineering

  2. Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can Geotech J. https://doi.org/10.1139/t99-038

    Article  Google Scholar 

  3. Cherubini C, Giasi C (1993) The coefficients of variation of some geotechnical parameters. Balkema, Rotterdam

    Google Scholar 

  4. Hoeg K, Murarka RP (1974) Probabilistic analysis and design of a retaining wall. Probab Anal J Geotech Geoenviron Eng 100:349–366

    Google Scholar 

  5. Sivakumar Babu GL, Srivastava A (2007) Reliability analysis of allowable pressure on shallow foundation using response surface method. Comput Geotech. https://doi.org/10.1016/j.compgeo.2006.11.002

    Article  Google Scholar 

  6. Ching J, Phoon KK (2011) A quantile-based approach for calibrating reliability-based partial factors. Struct Saf 33:275–285. https://doi.org/10.1016/j.strusafe.2011.04.002

    Article  Google Scholar 

  7. Samui P, Sitharam TG (2010) Site characterization model using artificial neural network and kriging. Int J Geomech. https://doi.org/10.1061/(ASCE)1532-3641(2010)10:5(171)

    Article  Google Scholar 

  8. Alipour A, Jafari A, Hossaini SMF (2012) Application of ANNs and MVLRA for estimation of specific charge in small tunnel. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000125

    Article  Google Scholar 

  9. Momeni E, Nazir R, Jahed Armaghani D, Maizir H (2014) Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Meas J Int Meas Confed 57:122–131. https://doi.org/10.1016/j.measurement.2014.08.007

    Article  Google Scholar 

  10. Farfani HA, Behnamfar F, Fathollahi A (2015) Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines. Expert Syst Appl 42:8971–8981. https://doi.org/10.1016/j.eswa.2015.07.053

    Article  Google Scholar 

  11. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  12. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res. https://doi.org/10.1162/15324430152748236

    Article  Google Scholar 

  13. Kaveh A, Fahimi-Farzam M, Kalateh-Ahani M (2012) Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA. Struct Eng Mech 44:379–403. https://doi.org/10.12989/sem.2012.44.3.379

    Article  Google Scholar 

  14. Singh S, Murthy TVR (2013) Neural network-based sensor fault accommodation in flight control system. J Intell Syst 22:317–333. https://doi.org/10.1515/jisys-2013-0032

    Article  Google Scholar 

  15. Basser H, Karami H, Shamshirband S et al (2014) Predicting optimum parameters of a protective spur dike using soft computing methodologies—a comparative study. Comput Fluids 97:168–176. https://doi.org/10.1016/j.compfluid.2014.04.013

    Article  Google Scholar 

  16. Hajela P (1990) Genetic search—an approach to the nonconvex optimization problem. AIAA J 28:1205–1210. https://doi.org/10.2514/3.25195

    Article  Google Scholar 

  17. Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. Biosystems 33(1):69–73

    Google Scholar 

  18. Dodagoudar GR, Venkatachalam G (2000) Reliability analysis of slopes using fuzzy sets theory. Comput Geotech. https://doi.org/10.1016/S0266-352X(00)00009-4

    Article  Google Scholar 

  19. Giasi CI, Masi P, Cherubini C (2003) Probabilistic and fuzzy reliability analysis of a sample slope near Aliano. Eng Geol 67:391–402. https://doi.org/10.1016/S0013-7952(02)00222-3

    Article  Google Scholar 

  20. Godil S, Shamim M, Enam S, Qidwai U (2011) Fuzzy logic: a “simple” solution for complexities in neurosciences. Surg Neurol Int. https://doi.org/10.4103/2152-7806.77177

    Article  Google Scholar 

  21. Yazdi JS, Kalantary F, Yazdi HS (2013) Investigation on the effect of data imbalance on prediction of liquefaction. Int J Geomech 13:463–466. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000217

    Article  Google Scholar 

  22. Teimouri R, Sohrabpoor H (2013) Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process. Front Mech Eng 8:429–442. https://doi.org/10.1007/s11465-013-0277-3

    Article  Google Scholar 

  23. Evans M, Kennedy J (2014) Integration of adaptive neuro fuzzy inference systems and principal component analysis for the control of tertiary scale formation on tinplate at a hot mill. Expert Syst Appl 41:6662–6675. https://doi.org/10.1016/j.eswa.2014.05.020

    Article  Google Scholar 

  24. Cornell CA (1969) Probability-based structural code. Am Concr Inst J 66:974–985. https://doi.org/10.14359/7446

    Article  Google Scholar 

  25. Hasofer A, Lind NC (1974) Exact and invariant second-moment code format. J Eng Mech Div 100:111–121

    Google Scholar 

  26. Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw. https://doi.org/10.1109/72.97934

    Article  Google Scholar 

  27. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  28. Brown M, Harris C (1994) Neurofuzzy adaptive modelling and control

  29. Holland JH (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  30. Ibrahim NM, Rahim NL, Amat RC et al (2012) Determination of plasticity index and compression index of soil at Perlis. APCBEE Procedia. https://doi.org/10.1016/j.apcbee.2012.11.016

    Article  Google Scholar 

  31. Das BM (2014) Advanced soil mechanics, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  32. Despotovic M, Nedic V, Despotovic D, Cvetanovic S (2015) Review and statistical analysis of different global solar radiation sunshine models. Renew Sustain Energy Rev 52:1869–1880

    Article  Google Scholar 

  33. Stone RJ (1993) Improved statistical procedure for the evaluation of solar radiation estimation models. Sol Energy. https://doi.org/10.1016/0038-092X(93)90124-7

    Article  Google Scholar 

  34. Legates DR, Mccabe GJ (2013) A refined index of model performance: a rejoinder. Int J Climatol. https://doi.org/10.1002/joc.3487

    Article  Google Scholar 

  35. Behar O, Khellaf A, Mohammedi K (2015) Comparison of solar radiation models and their validation under Algerian climate—the case of direct irradiance. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2015.03.067

    Article  Google Scholar 

  36. Clancy RM, Kaitala JE, Zambresky LF (1986) The fleet numerical oceanography center global spectral ocean wave model. Bull Am Meteorol Soc 67:498–512. https://doi.org/10.1175/1520-0477(1986)067%3c0498:tfnocg%3e2.0.co;2

    Article  Google Scholar 

  37. Eray O, Mert C, Kisi O (2018) Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation. Hydrol Res 49:1221–1233. https://doi.org/10.2166/nh.2017.076

    Article  Google Scholar 

  38. Domínguez E, Dawson CW, Ramírez A, Abrahart RJ (2011) The search for orthogonal hydrological modelling metrics: a case study of 20 monitoring stations in Colombia. J Hydroinform 13:429–442. https://doi.org/10.2166/hydro.2010.116

    Article  Google Scholar 

  39. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  40. Ranasinghe RATM, Jaksa MB, Pooya Nejad F, Kuo YL (2019) Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results. J Rock Mech Geotech Eng 11:815–823. https://doi.org/10.1016/j.jrmge.2018.10.007

    Article  Google Scholar 

  41. Viscarra Rossel RA, McGlynn RN, McBratney AB (2006) Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma. https://doi.org/10.1016/j.geoderma.2006.07.004

    Article  Google Scholar 

Download references

Funding

This study has no fundings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Samui, P., Kumar, D. et al. Reliability analysis of settlement of pile group. Innov. Infrastruct. Solut. 6, 24 (2021). https://doi.org/10.1007/s41062-020-00382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-020-00382-z

Keywords

Navigation