Skip to main content
Log in

Indole as a Versatile Building Block in Cycloaddition Reactions: Synthesis of Diverse Heterocyclic Frameworks

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Indole, a ubiquitous and structurally versatile aromatic compound, has emerged as a key player in the synthesis of diverse heterocyclic frameworks via cycloaddition reactions. These reactions are completely atom-economical and, hence, are considered as green reactions. This review article provides a comprehensive overview of the pivotal role played by indole in the construction of complex and biologically relevant heterocyclic compounds. Here we explore the chemistry of indole-based cycloadditions, highlighting their synthetic utility in accessing a wide array of heterocyclic architectures, including cyclohepta[b]indoles, tetrahydrocarbazoles, tetrahydroindolo[3,2-c]quinoline, and indolines, among others. Additionally, we discuss the mechanistic insights that underpin these transformations, emphasizing the strategic importance of indole as a building block. The content of this article will certainly encourage the readers to explore more work in this area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59

Similar content being viewed by others

Data availability

The data reported in this review article is available in the original paper mentioned in the references.

Abbreviations

Ac:

Acetyl

°C:

Degree centigrade

Cat.:

Catalyst

CHD:

Cyclohexylidene

CPA:

Chiral phosphoric acid

DCM:

Dichloromethane

DMF:

Dimethylformamide

DMAP:

4-(Dimethylamino)pyridine

DMSO:

Dimethylsulfoxide

d.r.:

Diastereomeric ratio

EDG:

Electron-donating group

EWG:

Electron-withdrawing group

eq.:

Equivalent

h:

Hour

iPr:

Iso Propyl

LED:

Light-emitting diode

MeOH:

Methanol

min:

Minutes

Me:

Methyl

MS:

Molecular sieve

r.t.:

Room temperature

TFE:

Trifluoroethanol

THF:

Tetrahydrofuran

tBu:

tertiary Butyl

W:

Watt

References

  1. Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH (2013) Molecules 18:6620–6662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar S, Ritika (2020) Futur J Pharm Sci 6:121

    Article  Google Scholar 

  3. Singh TP, Singh OM (2018) Mini-Rev Med Chem 18:9–25

    Article  CAS  PubMed  Google Scholar 

  4. Deb ML, Majumder S, Baruah B, Bhuyan PJ (2010) Synthesis, pp 929–932

  5. Generali JA, Cada DJ (2009) Hosp Pharm 44:670–671

    Article  Google Scholar 

  6. Bos M, Jenck F, Martin JR, Moreau JL, Mutel V, Sleight AJ, Widmer U (1997) Eur J Med Chem 32:253–261

    Article  CAS  Google Scholar 

  7. Stiborova M, Bieler CA, Wiessler M, Frei E (2001) Biochem Pharmacol 62:1675–1684

    Article  CAS  PubMed  Google Scholar 

  8. Soledade M, Pedras C (2014) Nat Prod J 4:166–172

    Google Scholar 

  9. Yu H, Jin H, Gong W, Wang Z, Liang H (2013) Molecules 18:1826–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barden TC (2010) Top Heterocycl Chem 26:31–46

    Article  CAS  Google Scholar 

  11. Kathiravan S, Raghunathan R (2010) Synlett, pp 952–954

  12. Stephen ML, Scott K (2002) Bur, Padwa A. Org Lett 26:4643–4645

    Google Scholar 

  13. Masahiko T, Hiroyuki I, Masao K (1976) Bull Chem Soc Jpn 49:1725–1726

    Article  Google Scholar 

  14. Kobayashi S, Jørgensen KA (2001) Cycloaddition reactions in organic synthesis. Wiley, Chichester

    Book  Google Scholar 

  15. Borah HN, Deb ML, Boruah RC, Bhuyan PJ (2005) Tetrahedron Lett 46:3391–3393

    Article  CAS  Google Scholar 

  16. Deb ML, Bhuyan PJ (2010) Beilstein J Org Chem 6(11)

  17. Baruah B, Deb ML, Bhuyan PJ (2007) Synlett 12:1873–1876

    Google Scholar 

  18. Alonso JM, Muñoz MP (2020) Eur J Org Chem, pp 7197–7213

  19. Rossi E, Abbiati G, Pirovano V (2017) Eur J Org Chem, pp 4512–4529

  20. Kester RF, Berthel SJ, Firooznia F (2010) [4+2] Cycloaddition reactions of indole derivatives. In: Gribble G (ed) Heterocyclic scaffolds II: topics in heterocyclic chemistry. Springer, Berlin, p 26

    Google Scholar 

  21. Han X, Li H, Hughes RP, Wu J (2012) Angew Chem Int Ed 51:10390–10393

    Article  CAS  Google Scholar 

  22. Zhang J, Shao J, Xue J, Wang Y, Li Y (2014) RSC Adv 4:63850–63854

    Article  CAS  Google Scholar 

  23. Li Y, Zhu CZ, Zhang J (2017) Eur J Org Chem, pp 6609–6613

  24. Gelis C, Levitre G, Merad J, Retailleau P, Neuville L, Masson G (2018) Angew Chem Int Ed 57:12121–12125

    Article  CAS  Google Scholar 

  25. Xu G, Chen L, Sun J (2018) Org Lett 20:3408–3412

    Article  CAS  PubMed  Google Scholar 

  26. Pirovano V, Brambilla E, Moretti A, Rizzato S, Abbiati G, Nava D, Rossi E (2020) J Org Chem 85:3265–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang XS, Yin MY, Wang W, Tu SJ (2012) Eur J Org Chem, pp 4811–4818

  28. Pitre SP, Scaiano JC, Yoon TP (2017) ACS Catal 7:6440–6444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu BQ, Yang WL, Wu XS, Wang YB, Deng WP (2018) Org Chem Front 5:3430–3434

    Article  CAS  Google Scholar 

  30. Yang X, Zhou YX, Yang H, Wang SS, Ouyang Q, Luo QL, Guo QX (2019) Org Lett 21:1161–1164

    Article  CAS  PubMed  Google Scholar 

  31. Zhao S, Cheng S, Liu H, Zhang J, Liu M, Yuan W, Zhang X (2020) Chem Commun 56:4200–4203

    Article  CAS  Google Scholar 

  32. Xu Q, Wang D, Wei Y, Shi M (2014) ChemistryOpen 3:93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li H, Hughes RP, Wu J (2014) J Am Chem Soc 136:6288–6296

    Article  CAS  PubMed  Google Scholar 

  34. Acharya A, Anumandla D, Jeffrey CS (2015) J Am Chem Soc 37:14858–14860

    Article  Google Scholar 

  35. Santhini PV, Chand SS, John J, Varma RL, Jaroschik F, Radhakrishnan KV (2017) Synlett 28:951–956

    Article  CAS  Google Scholar 

  36. Mei GJ, Zheng W, Gonçalves TP, Tang X, Huang KW, Lu Y (2020) iScience 23:100873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gall BK, Smith AK, Ferreira EM (2022) Angew Chem Int Ed 61:e202212187

    Article  CAS  Google Scholar 

  38. Tian HZ, Wu SF, Zhuang GW, Lina GQ, Sun XW (2022) Org Biomol Chem 20:3072–3075

    Article  CAS  PubMed  Google Scholar 

  39. Ryckaert B, Hullaert J, Hecke KV, Winne JM (2022) Org Lett 24:4119–4123

    Article  CAS  PubMed  Google Scholar 

  40. Shang D, Hu R, Bao Q, Chen J, Yu L, Chan PWH, Rao W (2023) Org Chem Front 10:140–149

    Article  CAS  Google Scholar 

  41. Mei G, Yuan H, Gu Y, Chen W, Chung LW, Li CC (2014) Angew Chem Int Ed 53:11051–11055

    Article  CAS  Google Scholar 

  42. Chen X, Yang N, Zeng W, Wang L, Li P, Li H (2021) Chem Commun 57:7047–7050

    Article  CAS  Google Scholar 

  43. Jia M, Monari M, Yang QQ, Bandini M (2015) Chem Commun 51:2320–2323

    Article  CAS  Google Scholar 

  44. Zhu M, Huang XL, Xu H, Zhang X, Zheng C, You SL (2020) CCS Chem 2:652–664

    Google Scholar 

  45. Ni D, Hu S, Tan X, Yu Y, Li Z, Deng L (2023) Angew Chem Int Ed 62:e202308606

    Article  CAS  Google Scholar 

  46. Sun J, Yan C, Sun Q, Han Y, Yan CG (2023) New J Chem 47:6694–6699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author MLD acknowledge the University of Science and Technology, Meghalaya, for the library facility, and BB acknowledge Pandu College for the same.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biswajita Baruah or Mohit L. Deb.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, B., Pegu, C.D. & Deb, M.L. Indole as a Versatile Building Block in Cycloaddition Reactions: Synthesis of Diverse Heterocyclic Frameworks. Top Curr Chem (Z) 382, 18 (2024). https://doi.org/10.1007/s41061-024-00463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00463-y

Keywords

Navigation