Skip to main content

Advertisement

Log in

Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Pyrimidine is a pharmacologically important moiety that exhibits diverse biological activities. This review reflects the growing significance of transition metal-catalyzed reactions for the synthesis of pyrimidines (with no discussion being made on the transition metal-catalyzed functionalization of pyrimidines). The effect of different catalysts on the selectivity/yields of pyrimidines and catalyst recyclability (wherever applicable) are described, together with attempts to illustrate the role of the catalyst through mechanisms. Although several methods have been researched for synthesizing this privileged scaffold, there has been a considerable push to expand transition metal-catalyzed, sustainable, efficient and selective synthetic strategies leading to pyrimidines. The aim of the authors with this update (2017–2023) is to drive the designing of new transition metal-mediated protocols for pyrimidine synthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73

Similar content being viewed by others

Data availability

All data used in this review were retrieved from the cited references.

References

  1. Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB (2020) A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25:1909–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jeelan Basha N, Goudgaon NM (2021) Comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J Mol Struct 1246:131168

  3. Zhuang J, Ma S (2020) Recent development of pyrimidine-containing antimicrobial agents. Chem Med Chem 15:1875–1886

    Article  CAS  PubMed  Google Scholar 

  4. Kilic-Kurt Z, Ozmen N, Bakar-Ates F (2020) Synthesis and anticancer activity of some pyrimidine derivatives with aryl urea moieties as apoptosis-inducing agents. Bioorg Chem 101:104028

    Article  CAS  PubMed  Google Scholar 

  5. Blokhina SV, Sharapova AV, Ol’khovich MV, Doroshenko IA, Levshin IB, Perlovich GL (2021) Synthesis and antifungal activity of new hybrids thiazolo[4,5-d]pyrimidines with (1H–1,2,4)triazole. Bioorg Med Chem Lett 40:127944

    Article  CAS  PubMed  Google Scholar 

  6. Kang D, Zhang H, Wang Z, Zhao T, Ginex T, Luque FJ, Yang Y, Wu G, Feng D, Wei F, Zhang J, De CE, Pannecouque C, Ho CC, Lee K-H, Murugan Arul N, Steitz TA, Zhan P, Liu X (2019) Identification of dihydrofuro[3,4-d]pyrimidine derivatives as novel HIV-1 non-nucleoside reverse transcriptase inhibitors with promising antiviral activities and desirable physicochemical properties. J Med Chem 62:1484–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cabras P, Angioni A, Garau VL, Melis M, Pirisi FM, Minelli EV, Cabitza F, Cubeddu M (1997) Fate of some new fungicides (cyprodinil, fludioxonil, pyrimethanil, and tebuconazole) from vine to wine. J Agric Food Chem 45:2708–2710

    Article  CAS  Google Scholar 

  8. Noviello S, Huang DB, Corey GR (2018) Iclaprim: a differentiated option for the treatment of skin and skin structure infections. Expert Rev Anti Infect Ther 16:793–803

    Article  CAS  PubMed  Google Scholar 

  9. Burger JA, Barr PM, Robak T, Owen C, Ghia P, Tedeschi A, Bairey O, Hillmen P, Coutre SE, Devereux S, Grosicki S, McCarthy H, Simpson D, Offner F, Moreno C, Dai S, Lal I, Dean JP, Kipps TJ (2020) Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia 34:787–798

    Article  CAS  PubMed  Google Scholar 

  10. Luo L, Carson JD, Dhanak D, Jackson JR, Huang PS, Lee Y, Sakowicz R, Copeland RA (2004) Mechanism of inhibition of human KSP by monastrol: insights from kinetic analysis and the effect of ionic strength on KSP inhibition. Biochemistry 43:15258–15266

    Article  CAS  PubMed  Google Scholar 

  11. Brehm JH, Scott Y, Koontz DL, Perry S, Hammer S, Katzenstein D, Mellors JW, Sluis-Cremer N (2012) Zidovudine (AZT) monotherapy selects for the A360V mutation in the connection domain of HIV-1 reverse transcriptase. PLoS One 7:e31558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Cao Y, Li Y, Zhang X (2022) Interactions between human serum albumin and sulfadimethoxine determined using spectroscopy and molecular docking. Molecules 27:1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aydıner B, Seferoğlu Z (2018) Proton sensitive functional organic fluorescent dyes based on coumarin-imidazo[1,2-a]pyrimidine; synthesis, photophysical properties, and investigation of protonation ability. Eur J Org Chem 2018:5921–5934

    Article  Google Scholar 

  14. Zhou YH, Xu J, Wu ZG, Zheng YX (2017) Synthesis, photoluminescence and electroluminescence of one iridium complex with 2-(2,4-difluorophenyl)-4-(trifluoromethyl)pyrimidine and tetraphenylimidodiphosphinate ligands. J Organomet Chem 848:226–231

    Article  CAS  Google Scholar 

  15. Elkanzi NAA, Farag AAM, Roushdy N, Mansour AM (2020) Design, fabrication and optical characterizations of pyrimidine fused quinolone carboxylate moiety for photodiode applications. Optik (Stuttg) 216:164882

    Article  CAS  Google Scholar 

  16. Nagata T, Obora Y (2020) Transition-metal-mediated/catalyzed synthesis of pyridines, pyrimidines, and triazines by [2+2+2] cycloaddition reactions. Asian J Org Chem 9:1532–1547

    Article  CAS  Google Scholar 

  17. Mahfoudh M, Abderrahim R, Leclerc E, Campagne JM (2017) Recent approaches to the synthesis of pyrimidine derivatives. Eur J Org Chem 2017:2856–2865

    Article  CAS  Google Scholar 

  18. Kumar S, Deep A, Narasimhan B (2019) A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives. Curr Bioact Compd 15:289–303

    Article  CAS  Google Scholar 

  19. Mahapatra A, Prasad T, Sharma T (2021) Pyrimidine: a review on anticancer activity with key emphasis on SAR. Future J Pharm Sci 7:123

    Article  Google Scholar 

  20. Lagoja IM (2005) Pyrimidine as constituent of natural biologically active compounds. Chem Biodivers 2:1–50

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Narasimhan B (2018) Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem Cent J 12:38–66

    Article  PubMed  PubMed Central  Google Scholar 

  22. Majumdar N, Paul ND, Mandal S, de Bruin B, Wulff WD (2015) Catalytic synthesis of 2H-chromenes. ACS Catal 5:2329–2366

    Article  CAS  Google Scholar 

  23. Maikhuri VK, Prasad AK, Jha A, Srivastava S (2021) Recent advances in the transition metal catalyzed synthesis of quinoxalines: a review. New J Chem 45:13214–13246

    Article  CAS  Google Scholar 

  24. Maikhuri VK, Maity J, Srivastava S, Prasad AK (2022) Transition metal-catalyzed double Cvinyl-H bond activation: synthesis of conjugated dienes. Org Biomol Chem 20:9522–9588

    Article  CAS  PubMed  Google Scholar 

  25. Anand A, Kumar R, Maity J, Maikhuri VK (2023) Recent progress in the Cu-catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles. Synth Commun 53:345–375

    Article  CAS  Google Scholar 

  26. Maikhuri VK, Khatri VK, Singh A, Prasad AK (2020) Synthesis of sugar diene and its Pd-catalyzed transformation into chromanes. J Org Chem 85:7068–7076

    Article  CAS  PubMed  Google Scholar 

  27. Geng D (2019) Recent advances on transition-metal-catalyzed allenamides cyclization. Chin J Org Chem 39:301–317

    Article  CAS  Google Scholar 

  28. Trost BM, Zuo Z, Schultz JE (2020) Transition-metal-catalyzed cycloaddition reactions to access seven-membered rings. Chem Eur J 26:15354–15377

    Article  CAS  PubMed  Google Scholar 

  29. Chen L, Chen K, Zhu S (2018) Transition-metal-catalyzed intramolecular nucleophilic addition of carbonyl groups to alkynes. Chem 4:1208–1262

    Article  CAS  Google Scholar 

  30. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC (2017) The merger of transition metal and photocatalysis. Nat Rev Chem 1:0052

    Article  CAS  Google Scholar 

  31. Cheung KPS, Sarkar S, Gevorgyan V (2022) Visible light-induced transition metal catalysis. Chem Rev 122:1543–1625

    Article  PubMed  Google Scholar 

  32. Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen F-E (2020) Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. Green Synth Catal 1:121–133

    Article  Google Scholar 

  33. Hollingworth C, Gouverneur V (2012) Transition metal catalysis and nucleophilic fluorination. Chem Commun 48:2929–2942

    Article  CAS  Google Scholar 

  34. Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L (2019) 3d Transition metals for C-H activation. Chem Rev 119:2192–2452

    Article  CAS  PubMed  Google Scholar 

  35. Chandra D, Dhiman AK, Parmar D, Sharma U (2022) Alkylation, alkenylation, and alkynylation of heterocyclic compounds through group 9 (Co, Rh, Ir) metal-catalyzed C-H activation. Catal Rev 64:716–788

    Article  CAS  Google Scholar 

  36. Wang R, Falck JR (2014) Transition metals catalyzed element-cyano bonds activations. Catal Rev 56:288–331

    Article  CAS  Google Scholar 

  37. Ayogu JI, Onoabedje EA (2019) Recent advances in transition metal-catalysed cross-coupling of (hetero)aryl halides and analogues under ligand-free conditions. Catal Sci Technol 9:5233–5255

    Article  CAS  Google Scholar 

  38. Radolko J, Ehlers P, Langer P (2021) Recent advances in transition-metal-catalyzed reactions of N-tosylhydrazones. Adv Synth Catal 363:3616–3654

    Article  CAS  Google Scholar 

  39. Reen GK, Kumar A, Sharma P (2019) Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage. Beilstein J Org Chem 15:1612–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Janardhanan JC, Bhaskaran RP, Praveen VK, Manoj N, Babu BP (2020) Transition-metal-catalyzed syntheses of indazoles. Asian J Org Chem 9:1410–1431

    Article  CAS  Google Scholar 

  41. Zweig JE, Kim DE, Newhouse TR (2017) Methods utilizing first-row transition metals in natural product total synthesis. Chem Rev 117:11680–11752

    Article  CAS  PubMed  Google Scholar 

  42. Alig L, Fritz M, Schneider S (2019) First-row transition metal (De) hydrogenation catalysis based on functional pincer ligands. Chem Rev 119:2681–2751

    Article  CAS  PubMed  Google Scholar 

  43. Manßen M, Schafer LL (2020) Titanium catalysis for the synthesis of fine chemicals—development and trends. Chem Soc Rev 49:6947–6994

    Article  PubMed  Google Scholar 

  44. Oi LE, Choo M-Y, Lee HV, Ong HC, Hamid SBA, Juan JC (2016) Recent advances of titanium dioxide (TiO2) for green organic synthesis. RSC Adv 6:108741–108754

    Article  CAS  Google Scholar 

  45. Aparna EP, Mathew D, Thomas A, Rakesh N (2020) Photocatalytic synthesis of 2-amino-4,6-diarylpyrimidines using nanoTiO2. J Photochem Photobiol A Chem 399:112648

  46. Kabeer SA, Reddy GR, Sreelakshmi P, Manidhar DM, Reddy CS (2017) TiO2–SiO2 catalyzed eco-friendly synthesis and antioxidant activity of benzopyrano[2,3-d]pyrimidine derivatives. J Heterocycl Chem 54:2598–2604

    Article  CAS  Google Scholar 

  47. Nezhadramezan-Ghasemabadi H, Mazloumi M, Azimi S, Shirini F (2023) One-pot three component synthesis of pyrido[2,3-d]pyrimidines and benzo[4,5]imidazo[1,2-a]-pyrimidine-3-carbonitrile catalyzed by acidic ionic liquid immobilized on nanoporous TiO2. J Mol Struct 1274:134435

    Article  CAS  Google Scholar 

  48. Kerru N, Gummidi L, Maddila SN, Bhaskaruni SVHS, Maddila S, Jonnalagadda SB (2020) Green synthesis and characterisation of novel [1,3,4]thiadiazolo/benzo[4,5]thiazolo[3,2-a]pyrimidines via multicomponent reaction using vanadium oxide loaded on fluorapatite as a robust and sustainable catalyst. RSC Adv 10:19803–19810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng X (2020) Recent advances in chromium-catalyzed organic transformations. Synlett 31:205–210

    Article  CAS  Google Scholar 

  50. Muzart J (1992) Chromium-catalyzed oxidations in organic synthesis. Chem Rev 92:113–140

    Article  CAS  Google Scholar 

  51. Abdollahi-Basir MH, Mirhosseini-Eshkevari B, Zamani F, Ghasemzadeh MA (2021) Synthesis of tetrazolo[1,5-a]pyrimidine-6-carbonitriles using HMTA-BAIL@MIL-101(Cr) as a superior heterogeneous catalyst. Sci Rep 11:5109–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grineva AA, Lugan N, Valyaev DA (2021) Organometallic manganese compounds in organic synthesis. In: Sortai JP (ed) Manganese catalysis in organic synthesis. Wiley, New York, pp 1–37

  53. Carney JR, Dillon Barry R, Thomas SP (2016) Recent advances of manganese catalysis for organic synthesis. Eur J Org Chem 2016:3912–3929

    Article  CAS  Google Scholar 

  54. Khusnutdinov RI, Bayguzina AR, Dzhemilev UM (2012) Manganese compounds in the catalysis of organic reactions. Russ J Org Chem 48:309–348

    Article  CAS  Google Scholar 

  55. Deibl N, Kempe R (2017) Manganese-catalyzed multicomponent synthesis of pyrimidines from alcohols and amidines. Angew Chem Int Ed 5:1663–1666

    Article  Google Scholar 

  56. Shen J, Meng X (2020) Selective synthesis of pyrimidines from cinnamyl alcohols and amidines using the heterogeneous OMS-2 catalyst. Catal Commun 138:105846

    Article  CAS  Google Scholar 

  57. Bolm C, Legros J, le Paih J, Zani L (2004) Iron-catalyzed reactions in organic synthesis. Chem Rev 104:6217–6254

    Article  CAS  PubMed  Google Scholar 

  58. Saranya S, Aneeja T, Neetha M, Anil KG (2020) Recent advances in the iron-catalysed multicomponent reactions. Appl Organomet Chem 34:e5991

    Article  CAS  Google Scholar 

  59. Mondal R, Sinha S, Das S, Chakraborty G, Paul ND (2020) Iron catalyzed synthesis of pyrimidines under air. Adv Synth Catal 362:594–600

    Article  CAS  Google Scholar 

  60. Xian L, Ma CT, Ouyang YG, Di JQ, Zhang ZH (2020) Synthesis of pyrimidine derivatives via multicomponent reaction catalyzed by ferric chloride. Appl Organomet Chem 34:e5921

    Article  CAS  Google Scholar 

  61. Mondal R, Chakraborty G, Guin AK, Sarkar S, Paul ND (2021) Iron-catalyzed alkyne-based multicomponent synthesis of pyrimidines under air. J Org Chem 86:13186–13197

    Article  CAS  PubMed  Google Scholar 

  62. Chu XQ, Cao W, Xu XP, Ji SJ (2017) Iron catalysis for modular pyrimidine synthesis through β-ammoniation/cyclization of saturated carbonyl compounds with amidines. J Org Chem 82:1145–1154

    Article  CAS  PubMed  Google Scholar 

  63. Iraji A, Nouri A, Edraki N, Pirhadi S, Khoshneviszadeh M, Khoshneviszadeh M (2020) One-pot synthesis of thioxo-tetrahydropyrimidine derivatives as potent β-glucuronidase inhibitor, biological evaluation, molecular docking and molecular dynamics studies. Bioorg Med Chem 28:115359

    Article  CAS  PubMed  Google Scholar 

  64. Kappe CO (2000) Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc Chem Res 33:879–888

    Article  CAS  PubMed  Google Scholar 

  65. Qin Z, Zhang R, Ying S, Ma Y (2022) Iron-catalyzed [3 + 2 + 1] annulation of 2-aminobenzimidazoles/3-aminopyrazoles and aromatic alkynes using N,N-dimethylaminoethanol as a one carbon synthon for the synthesis of pyrimido[1,2-a]benzimidazoles and pyrimido[1,2-b]indazoles. Org Chem Front 9:5624–5630

    Article  CAS  Google Scholar 

  66. Karimi F, Tighsazzadeh B, Asadi B, Mohammadpoor-Baltork I, Layeghi M, Mirkhani V, Tangestaninejad S, Moghadam M (2022) 3-(Propylthio)propane-1-sulfonic acid immobilized on functionalized magnetic nanoparticles as an efficient catalyst for one-pot synthesis of dihydrotetrazolo[1,5-a]pyrimidine and tetrahydrotetrazolo[5,1-b]quinazolinone derivatives. RSC Adv 12:22180–22187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. De SK (2021) Applications of nickel(II) compounds in organic synthesis. Curr Org Synth 18:517–534

    Article  CAS  PubMed  Google Scholar 

  68. Tasker SZ, Standley EA, Jamison TF (2014) Recent advances in homogeneous nickel catalysis. Nature 509:299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chakraborty G, Sikari R, Mondal R, Mandal S, Paul ND (2020) Nickel-catalyzed synthesis of pyrimidines via dehydrogenative functionalization of alcohols. Asian J Org Chem 9:431–436

    Article  CAS  Google Scholar 

  70. Chemler SR (2015) Copper catalysis in organic synthesis. Beilstein J Org Chem 11:2252–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaushik P, Kumar A, Kumar P, Kumar S, Singh BK, Bahadur V (2020) Cu-catalyzed one-pot multicomponent approach for the synthesis of symmetric and asymmetric 1,4-dihydropyridine (1,4-DHP) linked 1,2,3-triazole derivatives. Synth Commun 50:1–10

    Article  Google Scholar 

  72. Kumar Y, Matta A, Kumar P, Parmar VS, Eycken EV, Singh BK (2015) Cu(I)-catalyzed microwave-assisted synthesis of 1,2,3-triazole linked with 4-thiazolidinones: a one-pot sequential approach. RSC Adv 5:1628–1639

    Article  CAS  Google Scholar 

  73. Kumar Y, Bahadur V, Singh AK, Parmar VS, Eycken EV, Singh BK (2014) Microwave-assisted Cu(I)-catalyzed, three-component synthesis of 2-(4-((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1H-benzo[d]imidazoles. Beilstein J Org Chem 10:1413

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ren J, Ding S, Li X, Bi R, Zhao Q (2021) An approach for the synthesis of pyrazolo[1,5- a]pyrimidines via Cu(II)-catalyzed [3+3] annulation of saturated ketones with aminopyrazoles. J Org Chem 86:12762–12771

    Article  CAS  PubMed  Google Scholar 

  75. Rao C, Mai S, Song Q (2017) Cu-catalyzed synthesis of 3-formyl imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines by employing ethyl tertiary amines as carbon sources. Org Lett 19:4726–4729

    Article  CAS  PubMed  Google Scholar 

  76. Su L, Sun K, Pan N, Liu L, Sun M, Dong J, Zhou Y, Yin SF (2018) Cyclization of ketones with nitriles under base: a general and economical synthesis of pyrimidines. Org Lett 20:3399–3402

    Article  CAS  PubMed  Google Scholar 

  77. Nallagangula M, Namitharan K (2017) Copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions: simultaneous generation and trapping of copper-triazoles and -ketenimines for the synthesis of triazolopyrimidines. Org Lett 19:3536–3539

    Article  CAS  PubMed  Google Scholar 

  78. Jalani HB, Cai W, Lu H (2017) Copper-catalyzed one-pot synthesis of pyrimidines from amides, N,N′-dimethylformamide dimethylacetal, and enamines. Adv Synth Catal 359:2509–2513

    Article  CAS  Google Scholar 

  79. Shi T, Qin F, Li Q, Zhang W (2018) Copper-catalyzed three-component synthesis of pyrimidines from amidines and alcohols. Org Biomol Chem 16:9487–9491

    Article  CAS  PubMed  Google Scholar 

  80. Xu Z, Chen H, Deng GJ, Huang H (2021) Copper-catalyzed three-component formal [3 + 1 + 2] annulations for the synthesis of 2-aminopyrimidines from O-acyl ketoximes. Org Biomol Chem 19:8706–8710

    Article  CAS  PubMed  Google Scholar 

  81. Guo W, Liu D, Liao J, Ji F, Wu W, Jiang H (2017) Cu-catalyzed intermolecular [3 + 3] annulation involving oxidative activation of an unreactive C(sp3)-H bond: access to pyrimidine derivatives from amidines and ketones. Org Chem Front 4:1107–1111

    Article  CAS  Google Scholar 

  82. Qin Z, Ma Y, Li F (2021) Construction of a pyrimidine framework through [3 + 2 + 1] annulation of amidines, ketones, and N,N-dimethylaminoethanol as one carbon donor. J Org Chem 86:13734–13743

    Article  CAS  PubMed  Google Scholar 

  83. Rawat M, Rawat DS (2018) Copper oxide nanoparticle catalysed synthesis of imidazo[1,2-a]pyrimidine derivatives, their optical properties and selective fluorescent sensor towards zinc ion. Tetrahedron Lett 59:2341–2346

    Article  CAS  Google Scholar 

  84. Ahmadi N, Sayyed-Alangi SZ, Varasteh-Moradi A (2022) Cu@KF/clinoptilolite nanoparticles promoted green synthesis of pyrimidine derivatives: study of antioxidant activity. Polycycl Aromat Compd 42:4019–4033

    Article  CAS  Google Scholar 

  85. Ghomi JS, Bakhtiari A (2018) Ultrasonic accelerated biginelli-like reaction by the covalently anchored copper-isatoic anhydride over the modified surface of mesoporous SBA-15 to the synthesis of pyrimidines. ChemistrySelect 3:12704–12711

    Article  CAS  Google Scholar 

  86. Ghobadi M, Pourmoghaddam Qhazvini P, Kazemi M (2020) Catalytic application of zinc (II) bromide (ZnBr2) in organic synthesis. Synth Commun 5:3717–3738

    Article  Google Scholar 

  87. Pushpalatha C, Suresh J, Gayathri V, Sowmya S, Augustine D, Alamoudi A, Zidane B, Mohammad Albar NH, Patil S (2022) Zinc oxide nanoparticles: a review on its applications in dentistry. Front Bioeng Biotechnol 10:917990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu XF, Neumann H (2012) Zinc-catalyzed organic synthesis: C–C, C–N, C–O bond formation reactions. Adv Synth Catal 354:3141–3160

    Article  CAS  Google Scholar 

  89. Das S, Mondal R, Guin AK, Paul ND (2022) Ligand centered redox enabled sustainable synthesis of triazines and pyrimidines using a zinc-stabilized azo-anion radical catalyst. Org Biomol Chem 20:3105–3117

    Article  CAS  PubMed  Google Scholar 

  90. Ahmed EA, Soliman AMM, Ali AM, Ali El-Remaily MAEAA (2021) Boosting the catalytic performance of zinc linked amino acid complex as an eco-friendly for synthesis of novel pyrimidines in aqueous medium. Appl Organomet Chem 35:e6197

    Article  CAS  Google Scholar 

  91. Abdollahi-Basir MH, Shirini F, Tajik H, Ghasemzadeh MAA (2022) Three-component process for the synthesis of tetrazolo[1,5-a]pyrimidine-6-carbonitrile derivatives using amino-functionalized UiO-66(Zr) metal organic framework (MOF). Polycycl Aromat Compd 42:5719–5730

    Article  CAS  Google Scholar 

  92. Hafeez J, Bilal M, Rasool N, Hafeez U, Adnan Ali Shah S, Imran S, Amiruddin Zakaria Z (2022) Synthesis of ruthenium complexes and their catalytic applications: a review. Arab J Chem 15:104165

    Article  CAS  Google Scholar 

  93. Murahashi S-I, Takaya H, Naota T (2022) Ruthenium catalysis in organic synthesis. Pure Appl Chem 74:19–24

    Article  Google Scholar 

  94. Xiong B, Jiang J, Zhang S, Jiang H, Ke Z, Zhang M (2017) Ruthenium-catalyzed direct synthesis of semisaturated bicyclic pyrimidines via selective transfer hydrogenation. Org Lett 19:2730–2733

    Article  CAS  PubMed  Google Scholar 

  95. Maji M, Kundu S (2019) Cooperative ruthenium complex catalyzed multicomponent synthesis of pyrimidines. Dalton Trans 48:17479–17487

    Article  CAS  PubMed  Google Scholar 

  96. Maji M, Borthakur I, Guria S, Singha S, Kundu S (2021) Direct access to 2-(N-alkylamino)pyrimidines via ruthenium catalyzed tandem multicomponent annulation/N-alkylation. J Catal 402:37–51

    Article  CAS  Google Scholar 

  97. Mondal R, Herbert DE (2020) Synthesis of pyridines, quinolines, and pyrimidines via acceptorless dehydrogenative coupling catalyzed by a simple bidentate P^N ligand supported Ru complex. Organometallics 39:1310–1317

    Article  CAS  Google Scholar 

  98. Mondal R, Lozada IB, Stotska O, Herbert DE (2020) Catalytic synthesis of luminescent pyrimidines via acceptor-less dehydrogenative coupling. J Org Chem 85:13747–13756

    Article  CAS  PubMed  Google Scholar 

  99. Medici S, Peana M, Pelucelli A, Zoroddu MA (2021) Rh(I) complexes in catalysis: a five-year trend. Molecules 26:2553–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lalji RSK, Prince GM, Kumar S, Singh BK (2023) Rhodium-catalyzed selenylation and sulfenylation of quinoxalinones ‘on water.’ RSC Adv 13:6191–6198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tiuftiakov NY, Strelnikova JO, Filippov IP, Khaidarov AR, Khlebnikov AF, Bunev AS, Novikov MS, Rostovskii NV (2021) Rhodium-catalyzed synthesis of 2-aroylpyrimidines via cascade heteropolyene rearrangement. Org Lett 23:6998–7002

    Article  CAS  PubMed  Google Scholar 

  102. Hoang GL, Streit AD, Ellman JA (2018) Three-component coupling of aldehydes, aminopyrazoles, and sulfoxonium ylides via rhodium(III)-catalyzed imidoyl C–H activation: synthesis of pyrazolo[1,5-a]pyrimidines. J Org Chem 83:15347–15360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ruiz-Castillo P, Buchwald SL (2016) Applications of palladium-catalyzed C–N cross-coupling reactions. Chem Rev 116:12564–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Biffis A, Centomo P, del Zotto A, Zecca M (2018) Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem Rev 118:2249–2295

    Article  CAS  PubMed  Google Scholar 

  105. Roy D, Uozumi Y (2018) Recent advances in palladium-catalyzed cross-coupling reactions at Ppm to Ppb molar catalyst loadings. Ad Synth Catal 360:602–625

    Article  CAS  Google Scholar 

  106. Rayadurgam J, Sana S, Sasikumar M, Gu Q (2021) Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020. Org Chem Front 8:384–414

    Article  CAS  Google Scholar 

  107. Hussain N, Hussain A (2021) Advances in Pd-catalyzed C-C bond formation in carbohydrates and their applications in the synthesis of natural products and medicinally relevant molecules. RSC Adv 11:34369–34391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reddy Kotla SK, Vandavasi JK, Wang JJ, Parang K, Tiwari RK (2017) Palladium-catalyzed intramolecular cross-dehydrogenative coupling: synthesis of fused imidazo[1,2-a]pyrimidines and pyrazolo[1,5-a]pyrimidines. ACS Omega 2:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Neetha M, Aneeja T, Afsina CMA, Anilkumar G (2020) An overview of Ag-catalyzed synthesis of six-membered heterocycles. ChemCatChem 12:5330–5358

    Article  CAS  Google Scholar 

  110. Fang G, Bi X (2015) Silver-catalysed reactions of alkynes: recent advances. Chem Soc Rev 44:8124–8173

    Article  CAS  PubMed  Google Scholar 

  111. Li M, Wu W, Jiang H (2020) Recent advances in silver-catalyzed transformations of electronically unbiased alkenes and alkynes. ChemCatChem 12:5034–5050

    Article  CAS  Google Scholar 

  112. Dong X-Y, Gao Z-W, Yang K-F, Zhang W-Q, Xu L-W (2015) Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal Sci Technol 5:2554–2574

    Article  CAS  Google Scholar 

  113. Shaker Ardakani L, Surendar A, Thangavelu L, Mandal T (2021) Silver nanoparticles (Ag NPs) as catalyst in chemical reactions. Synth Commun 51:1516–1536

    CAS  Google Scholar 

  114. Balwe SG, Shinde VV, Rokade AA, Park SS, Jeong YT (2017) Green synthesis and characterization of silver nanoparticles (Ag NPs) from extract of plant radix puerariae: an efficient and recyclable catalyst for the construction of pyrimido[1,2-b]indazole derivatives under solvent-free conditions. Catal Commun 99:121–126

    Article  CAS  Google Scholar 

  115. Guo Y, Gao Q (2022) Recent advances in 3-aminoindazoles as versatile synthons for the synthesis of nitrogen heterocycles. Org Biomol Chem 20:7138–7150

    Article  CAS  PubMed  Google Scholar 

  116. Gangu KK, Tharividi SG, Kerru N, Jonnalagadda SB (2021) Excellent catalytic activity of two Cd(II) metal-organic frameworks in the synthesis of benzothiazolo-pyrimidines. ChemistrySelect 6:11682–11689

    Article  CAS  Google Scholar 

  117. Mastalir M, Glatz M, Pittenauer E, Allmaier G, Kirchner K (2019) Rhenium-catalyzed dehydrogenative coupling of alcohols and amines to afford nitrogen-containing aromatics and more. Org Lett 21:1116–1120

    Article  CAS  PubMed  Google Scholar 

  118. Glatz M, Stöger B, Himmelbauer D, Veiros LF, Kirchner K (2018) Chemoselective hydrogenation of aldehydes under mild, base-free conditions: manganese outperforms rhenium. ACS Catal 8:4009–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sultana Poly S, Siddiki SMAH, Touchy AS, Ting KW, Toyao T, Maeno Z, Kanda Y, Shimizu KI (2018) Acceptorless dehydrogenative synthesis of pyrimidines from alcohols and amidines catalyzed by supported platinum nanoparticles. ACS Catal 8:11330–11341

    Article  CAS  Google Scholar 

  120. Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107:3180–3211

    Article  CAS  PubMed  Google Scholar 

  121. Nijamudheen A, Datta A (2020) Gold-catalyzed cross-coupling reactions: an overview of design strategies, mechanistic studies, and applications. Chem Eur J 26:1442–1487

    Article  CAS  PubMed  Google Scholar 

  122. Liu D, Nie Q, Cai M (2018) Heterogeneous gold(I)-catalyzed [2 + 2 + 2] annulation between ynamides and nitriles: straightforward synthesis of tetrasubstituted pyrimidines. Tetrahedron 74:3020–3029

    Article  CAS  Google Scholar 

  123. Jiang M, Nie Q, Cai M (2019) Heterogeneous gold(I)-catalyzed cyclization between ynals and amidines: an efficient and practical synthesis of 2,4-disubstituted pyrimidines. Synth Commun 49:2488–2500

    Article  CAS  Google Scholar 

  124. Bhaskaruni SVHS, Maddila S, van Zyl WE, Jonnalagadda SB (2018) Ag2O on ZrO2 as a recyclable catalyst for multicomponent synthesis of indenopyrimidine derivatives. Molecules 2:1648

    Article  Google Scholar 

  125. Geesi MH, Ouerghi O, Elsanousi A, Kaiba A, Riadi Y (2022) Ultrasound-assisted preparation of Cu-doped TiO2 nanoparticles as a nanocatalyst for sonochemical synthesis of pyridopyrimidines. Polycycl Aromat Compd 42:80–90

    Article  CAS  Google Scholar 

  126. Rambabu T, Douglas SP, Rao BV (2022) One-pot green synthesis of cyclohepta[d]pyrimidine-2(5H)-thione derivatives using iron titanate (FeTiO3, ilmenite) nanoparticles and evaluation of their antibacterial activity. Asian J Chem 34:1543–1548

    Article  CAS  Google Scholar 

  127. Kumari M, Jain Y, Yadav P, Laddha H, Gupta R (2019) Synthesis of Fe3O4-DOPA-Cu magnetically separable nanocatalyst: a versatile and robust catalyst for an array of sustainable multicomponent reactions under microwave irradiation. Catal Lett 149:2180–2194

    Article  CAS  Google Scholar 

  128. Hosseinzadegan S, Hazeri N, Maghsoodlou MT (2020) Synthesis of novel thiazolo[3,2-a]chromeno[4,3-d]pyrimidine-6(7H)-ones by bioactive Fe3O4@gly@thiophen@Cu(NO3)2 as reusable magnetic nanocatalyst. Appl Organomet Chem 34:e5797

    Article  CAS  Google Scholar 

  129. Nasseri MA, Rezazadeh Z, Kazemnejadi M, Allahresani A (2021) Cu-Mn bimetallic complex immobilized on magnetic NPs as an efficient catalyst for domino one-pot preparation of benzimidazole and Biginelli reactions from alcohols. Catal Lett 151:1049–1067

    Article  CAS  Google Scholar 

  130. Chavan P, Bangale S, Pansare D, Shelke R, Jadhav S, Tupare S, Kamble D, Rai M (2020) Synthesis of substituted pyrimidine using ZnFe2O4 nanocatalyst via one pot multi-component reaction ultrasonic irradiation. J Heterocycl Chem 57:3326–3333

    Article  CAS  Google Scholar 

  131. Bakhshali-Dehkordi R, Ghasemzadeh MA (2021) Fe3O4@TiO2@ILs-ZIF-8 nanocomposite: a robust catalyst for the synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines. J Mol Struct 1236:130298

    Article  CAS  Google Scholar 

  132. Poola S, Shaik MS, Sudileti M, Yakkate S, Nalluri V, Chippada A, Cirandur SR (2020) Nano CuO–Ag-catalyzed synthesis of some novel pyrano[2,3-d] pyrimidine derivatives and evaluation of their bioactivity. J Chin Chem Soc 67:805–820

    Article  CAS  Google Scholar 

  133. Fuji M, Obora Y (2017) FeCl3-assisted niobium-catalyzed cycloaddition of nitriles and alkynes: synthesis of alkyl- and arylpyrimidines based on independent functions of NbCl5 and FeCl3 Lewis acids. Org Lett 19:5569–5572

    Article  CAS  PubMed  Google Scholar 

  134. Poly SS, Hashiguchi Y, Sultana A, Nakamura I, Shimizu K, Yasumura S, Fujitani T (2021) Flow reactor approach for the facile and continuous synthesis of efficient Pd@Pt core-shell nanoparticles for acceptorless dehydrogenative synthesis of pyrimidines from alcohols and amidines. Appl Catal A Gen 619:118158

    Article  CAS  Google Scholar 

  135. Wang A, Hu X, Xie X, Liu Y (2021) Cascade skeletal rearrangement of gold carbene intermediates: synthesis of medium-sized pyrimidine-fused benzolactones. Adv Synth Catal 363:3769–3774

    Article  CAS  Google Scholar 

  136. Yelmame GB, Jagtap SB (2022) Synthesis and characterization of 5% Ni-ZnO as robust nanocatalyst for eco-friendly synthesis of pyrimidines. Results Chem 4:100619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.K. Maikhuri and B. K. Singh are grateful to the Institution of Eminence, University of Delhi for providing financial support to strengthen research and development. D. Mathur is grateful for the Navdhara Research Grant by Daulat Ram College, University of Delhi for providing funding assistance to support research. We thank several colleagues and co-workers mentioned in the Reference List from our Laboratories for their collaboration, dedication and hard work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Mathur.

Ethics declarations

Conflict of Interest

The authors do not have any conflicts of interest to declare.

Additional information

We dedicate this article to the fond memory of our long-term friend, collaborator, colleague and teacher, the (late) Professor Ashok K. Prasad, whose continued inspiration over the past several decades has shaped the careers of many young scientists.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maikhuri, V.K., Mathur, D., Chaudhary, A. et al. Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives. Top Curr Chem (Z) 382, 4 (2024). https://doi.org/10.1007/s41061-024-00451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00451-2

Keywords

Navigation