Skip to main content

Conjugates of Tetrapyrrolic Macrocycles as Potential Anticancer Target-Oriented Photosensitizers

Abstract

Photodynamic therapy is a minimally invasive treatment of tumors using photosensitizers, light, and reactive oxygen species, which can destroy cellular structures. With the development of photodynamic therapy, significant efforts have been made to create new efficient photosensitizers with improved delivery to cells, stability, and selectivity against cancer tissues. Naturally occurring tetrapyrrolic macrocycles, such as porphyrins and chlorins, are very attractive as photosensitizers, and their structural modification and conjugation with other biologically active molecules are promising approaches for creating new photosensitizers specifically targeting cancer cells. The present review aims to highlight recent developments in the design, preparation, and investigation of complex conjugates of tetrapyrrolic macrocycles, which can potentially be used as sensitizers for target-oriented photodynamic therapy of cancer. In this review, we discuss the structure, photodynamic effect, and anticancer activity of the following conjugates of tetrapyrrolic macrocycles: (1) conjugates obtained by modifying peripheral substituents in porphyrins and chlorins; (2) conjugates of porphyrins and chlorins with lipids, carbohydrates, steroids, and peptides; (3) conjugates of porphyrins and chlorins with anticancer drugs and some other biologically active molecules; (4) metal-containing conjugates. The question of how the conjugate structure affects its specificity, internalization, localization, and photoinduced toxicity within cancer cells is the focus of this review.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 4
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Scheme 5
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

PDT:

Photodynamic therapy

PSs:

Photosensitizers

ROS:

Reactive oxygen species

SO:

Singlet oxygen

.OH:

Hydroxyl radical

HOO·:

Hydroperoxyl radical

O 2 :

Superoxide

BODIPY:

Difluoro-4-bora-3a,4a-diaza-s-indacene

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

DNA:

Deoxyribonucleic acid

DMSO:

Dimethyl sulfoxide

ATP:

Adenosine triphosphate

DiR:

1,1′-Dioctadecyl-3,3,3′,3′-tetramethyl-indotricarbocyanine iodide

FRET:

Fluorescence resonance energy transfer

NIR:

Near-infrared

DCC:

N,N′-Dicyclohexylcarbodiimide

HOBt:

Hydroxybenzotriazole

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

DMAP:

4-Dimethylaminopyridine

HPPH:

2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a

PET:

Positron emission tomography

TNFSF13:

Tumor necrosis factor ligand superfamily member 13

LDL:

Low-density lipoprotein

M2-TAMs:

Tumor-associated macrophages

RIF:

Radiation-induced fibrosarcoma

ABCG2:

ATP-binding cassette super-family G member 2

α-MSH:

α-Melanocyte-stimulating hormone

CD133:

Prominin-1 (surface marker of colorectal cancer)

K6L9:

Peptide-Ac[D(K6L9)]NH2 (antimicrobial peptide, possessing membrane-lytic property)

cRGD:

Cyclic Arg-Gly-Asp

Lys:

Lysine

Gly:

Glycine

Ala:

Alanine

YY1:

Yin Yang 1 (transcriptional repressor protein)

RKIP:

Raf kinase inhibitor protein

BAX:

Bcl-2-like protein 4 (apoptosis regulator)

Bcl-2:

B-cell lymphoma 2 (apoptosis regulator)

HDAC:

Histone deacetylase

PSMA:

Prostate-specific membrane antigen

ADP:

Adenosine diphosphate

PARP:

Poly(ADP-ribose) polymerase

EPR:

Electron paramagnetic resonance

MR:

Magnetic resonance

DTPA:

Diethylenetriaminepentaacetic acid

EGFR:

Epidermal growth factor receptor

VEGFR:

Vascular endothelial growth factor

References

  1. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  CAS  PubMed  Google Scholar 

  2. Sobolev AS, Jans DA, Rosenkranz AA (2000) Targeted intracellular delivery of photosensitizers. Prog Biophys Mol Biol 73(1):51–90

    Article  CAS  PubMed  Google Scholar 

  3. Vicente MG (2001) Porphyrin-based sensitizers in the detection and treatment of cancer: recent progress. Curr Med Chem Anticancer Agents 1(2):175–194

    Article  CAS  PubMed  Google Scholar 

  4. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107

    CAS  PubMed  Google Scholar 

  5. Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362

    Article  CAS  PubMed  Google Scholar 

  6. Yoon I, Li JZ, Shim YK (2013) Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc 46(1):7–23

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang Q, He J, Yu W, Li X, Liu Z, Zhou B, Liu Y (2020) A promising anticancer drug: a photosensitizer based on the porphyrin skeleton. RCS Med Chem 11(4):427–437

    Google Scholar 

  8. Nyman ES, Hynninen PH (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B 73(1–2):1–28

    Article  CAS  PubMed  Google Scholar 

  9. Garland MJ, Cassidy CM, Woolfson D, Donnelly RF (2009) Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. Future Med Chem 1(4):667–691

    Article  CAS  PubMed  Google Scholar 

  10. Lin Y, Zhou T, Bai R, Xie Y (2020) Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J Enzyme Inhib Med Chem 35(1):1080–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dandash F, Leger DY, Diab-Assaf M, Sol V, Liagre B (2021) Porphyrin/chlorin derivatives as promising molecules for therapy of colorectal cancer. Molecules 26(23):7268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xodo LE, Rapozzi V, Zacchigna M, Drioli S, Zorzet S (2012) The chlorophyll catabolite pheophorbide a as a photosensitizer for the photodynamic therapy. Curr Med Chem 19(6):799–807

    Article  CAS  PubMed  Google Scholar 

  13. Chan J, Tang P, Hon P, Au SW, Tsui SK, Waye M, Kong SK, Mak T, Fung K (2005) Pheophorbide a, a major antitumor component purified from Scutellaria banbata, induces apoptosis in human hepatocellular carcinoma cells. Planta Med 72(1):28–33

    Article  Google Scholar 

  14. Tang P, Chan J, Au SW, Kong SK, Tsui SK, Waye MM, Mak TC, Fong WP, Fung KP (2006) Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol Ther 5(9):1111–1116

    Article  CAS  PubMed  Google Scholar 

  15. Tian Y, Leung W, Yue K, Mak N (2006) Cell death induced by MPPA–PDT in prostate carcinoma in vitro and in vivo. Biochem Biophys Res Commun 348(2):413–420

    Article  CAS  PubMed  Google Scholar 

  16. Liu L-Y, Man X-X, Yao H-X, Tan Y-Y (2017) Effects of pheophorbide a-mediated photodynamic therapy on proliferation and metastasis of human prostate cancer cells. Eur Rev Med Pharmacol Sci 21(24):5571–5579

    PubMed  Google Scholar 

  17. Hoi SW-H, Wong HM, Chan JY-W, Yue GGL, Tse GM-K, Law BK-B, Fong WP, Fung KP (2012) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res 26(5):734–742

    Article  CAS  PubMed  Google Scholar 

  18. Tang P, Liu X, Zhang D, Fong W, Fung K (2009) Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol Ther 8(9):533–539

    Article  CAS  PubMed  Google Scholar 

  19. Lee W-Y, Lim D-S, Ko S-H, Park Y-J, Ryu K-S, Ahn M-Y, Kim Y-R, Lee DW, Cho C-W (2004) Photoactivation of pheophorbide a induces mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol B 75(3):119–126

    Article  CAS  PubMed  Google Scholar 

  20. Rapozzi V, Maculan M, Xodo LE (2009) Evidence that photoactivated pheophorbide a causes in human cancer cells a photodynamic effect involving lipid peroxidation. Cancer Biol Ther 8(14):1318–1327

    Article  CAS  PubMed  Google Scholar 

  21. Della Pietra E, Simonella F, Bonavida B, Xodo LE, Rapozzi V (2015) Repeated sub-optimal photodynamic treatments with pheophorbide a induce an epithelial mesenchymal transition in prostate cancer cells via nitric oxide. Nitric Oxide 45:43–53

    Article  CAS  PubMed  Google Scholar 

  22. Xu DD, Lam HM, Hoeven R, Xu CB, Leung AWN, Cho WCS (2013) Photodynamic therapy induced cell death of hormone insensitive prostate cancer PC-3 cells with autophagic characteristics. Photodiagnosis Photodyn Ther 10(3):278–287

    Article  CAS  PubMed  Google Scholar 

  23. Postigo F, Sagristá ML, De Madariaga MA, Nonell S, Mora M (2006) Photosensitization of skin fibroblasts and hela cells by three chlorine derivatives: role of chemical structure and delivery vehicle. Biochim Biophys Acta 1758(5):583–596

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto T, Miyagawa F (1978). In: Nieburgs HE (ed) Photoradiation therapy, phytochlorin and visible light, prevention and detection of cancer, vol 1. Dekker, New York, pp 1789–1802

    Google Scholar 

  25. Kessel D (1989) Determinants of photosensitization by mono-L-aspartyl chlorin e6. Photochem Photobiol 49(4):447–452

    Article  CAS  PubMed  Google Scholar 

  26. Kochubeev GA, Frolov AA, Kostyuk VA, Pronskaya IV, Gurinovich GP (1988) Photodynamic effect of chlorin e on erythrocyte membranes. Biofizika 33(3):471–474

    CAS  PubMed  Google Scholar 

  27. Kochubeev GA, Frolov AA, Gurinovich GP (1989) Singlet oxygen and photodestruction of erythrocyte membranes sensitized by chlorin e6. Biofizika 34(4):598–601

    CAS  PubMed  Google Scholar 

  28. Frolov AA, Kochubeev GA, Gurinovich GP (1988) Singlet oxygen and chlorin ee43 44 photosensitized degradation of erythrocyte membranes. Dokl Acad Nauk BSSR 32:569–571

    CAS  Google Scholar 

  29. Gurinovich GP, Zorina TE, Arkatov YM, Sarzhevskaya MW, Cherenkevich SN (1989) The distribution of chlorine e6 and its derivatives in HeLa cells studied using luminescence microscopy. Tsitologiya 31(9):1058–1063

    CAS  Google Scholar 

  30. Nourse WL, Parkhurst RM, Skinner WA, Jordan RT (1988) Photodynamic toxicity of porphyrins and chlorins for a human tumor cell line: combined light and concentration dose responses for the retained fraction. Biochem Biophys Res Commun 151(1):506–511

    Article  CAS  PubMed  Google Scholar 

  31. Spikes JD (1990) Chlorins as photosensitizers in biology and medicine. J Photochem Photobiol B 6(3):259–274

    Article  CAS  PubMed  Google Scholar 

  32. Luo W, Liu RS, Zhu JG, Li YC, Liu HC (2015) Subcellular location and photodynamic therapeutic effect of chlorin e6 in the human tongue squamous cell cancer Tca8113 cell line. Oncol Lett 9(2):551–556

    Article  PubMed  Google Scholar 

  33. Zorin VP, Mel’novZorinaCherenkevich SBTESN (1989) Changes of the rate of chlorines-photosensitized injury of Ehrlich ascites carcinoma during tumor development. Dokl Akad Nauk BSSR 36:565–567

    Google Scholar 

  34. Begum G, Dube A, Joshi PG, Gupta PK, Joshi NB (2009) Chlorin p6 preferentially localizes in endoplasmic reticulum and Golgi apparatus and inhibits Ca2+ release from intracellular store. J Photochem Photobiol B 95(3):177–184

    Article  CAS  PubMed  Google Scholar 

  35. Datta A, Dube A, Jain B, Tiwari A, Gupta PK (2002) The effect of pH and surfactant on the aggregation behavior of chlorin p6: a fluorescence spectroscopic study. Photochem Photobiol 75(5):488–494

    Article  CAS  PubMed  Google Scholar 

  36. Sharma M, Dube A, Bansal H, Gupta PK (2004) Effect of pH on uptake and photodynamic action of chlorin p6 on human colon and breast adenocarcinoma cell lines. Photochem Photobiol Sci 3(2):231–235

    Article  CAS  PubMed  Google Scholar 

  37. Dube A, Sharma M, Gupta PK (2006) Evaluation of chlorin p6 for photodynamic treatment of squamous cell carcinoma in the hamster cheek pouch model. Oral Oncol 42(1):77–82

    Article  CAS  PubMed  Google Scholar 

  38. Sharma M, Sahu K, Dube A, Gupta PK (2005) Extracellular pH influences the mode of cell death in human colon adenocarcinoma cells subjected to photodynamic treatment with chlorin p6. J Photochem Photobiol B 81(2):107–113

    Article  CAS  PubMed  Google Scholar 

  39. Matroule J-Y, Bonizzi G, Morliere P, Paillous N, Santus R, Bours V, Piette J (1999) Pyro pheophorbide-a methyl ester-mediated photosensitization activates transcription factor NF-kB through the interleukin-1 receptor-dependent signaling pathway. J Biol Chem 274(5):2988–3000

    Article  CAS  PubMed  Google Scholar 

  40. Matroule J-Y, Carthy CM, Granville DJ, Jolois O, Hunt DWC, Piette J (2001) Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide-a methylester photosensitization. Oncogene 20:4070–4084

    Article  CAS  PubMed  Google Scholar 

  41. Sun X, Leung WN (2002) Photodynamic therapy with pyropheophorbide-a methyl ester in human lung carcinoma cancer cell: efficacy, localization and apoptosis. Photochem Photobiol 75(6):644–651

    Article  CAS  PubMed  Google Scholar 

  42. Tian Y, Leung W, Yue K, Mak N (2006) Cell death induced by MPPa–PDT in prostate carcinoma in vitro and in vivo. Biochem Biophys Res Comm 348(2):413–420

    Article  CAS  PubMed  Google Scholar 

  43. Chang J-E, Liu Y, Lee TH, Lee WK, Yoon I, Kim K (2018) Tumor size-dependent anticancer efficacy of chlorin derivatives for photodynamic therapy. Int J Mol Sci 19(6):1596

    Article  PubMed  PubMed Central  Google Scholar 

  44. Matroulel J-Y, Hellin A-C, Morliere P, Fabiano A-S, Santus R, Merville M-P, Piette J (1999) Role of nuclear factor kB in colon cancer cell apoptosis mediated by aminopyropheophorbide photosensitization. Photochem Photobiol 70(4):540–548

    Google Scholar 

  45. Kelbauskas L, Dietel W (2002) Internalization of aggregated photosensitizers by tumor cells: subcellular time-resolved fluorescence spectroscopy on derivatives of pyropheophorbide-a ethers and chlorin e6 under femtosecond one- and two-photon excitations. Photochem Photobiol 76(6):686–694

    Article  CAS  PubMed  Google Scholar 

  46. Nikolaeva IA, Morozova JV, Zavialova MG, Novikov RA, Tkachev YV, Timofeev VP, Misharin AY, Ponomarev GV (2010) Natural chlorins modified with cholesterol moiety. Synthesis, characteristics, copper complexes, and entrapping in phospholipid vesicles. Macroheterocycles 3(2–3):150–156

    Article  CAS  Google Scholar 

  47. Ponomarev GV, Solovieva MN, Dugin NO, Zavialova MG, Mehtiev AR, Misharin AY, Novikov RA, Tkachev YV, Popenko VI, Timofeev VP (2013) Lipophilic derivatives of natural chlorins: synthesis, mixed micelles with phospholipids, and uptake by cultured cells. Bioorg Med Chem 21(17):5420–5427

    Article  CAS  PubMed  Google Scholar 

  48. Belykh DV, Tarabukina IS, Gruzdev IV, Kuchin AV (2009) Transformations of the extra ring in pheophorbide a methyl ester in the reaction with N,N,N′,N′-tetramethylmethanediamine. Russ J Org Chem 45:452–459

    Article  CAS  Google Scholar 

  49. Belykh DV, Kopylov EA, Gruzdev IV, Kuchin AV (2010) Opening of the extra ring in pheophorbide a methyl ester by the action of amines as a one-step method for introduction of additional fragments at the periphery of chlorin macroring. Russ J Org Chem 46:577–585

    Article  CAS  Google Scholar 

  50. Srdanovic S, Gao Y-H, Chen D-Y, Yan Y-J, Margetic D, Chen Z-L (2018) The photodynamic activity of 131-[2′-(2-pyridyl)-ethylamine] chlorin e6 photosensitizer in human esophageal cancer. Bioorg Med Chem Lett 28(10):1785–1791

    Article  CAS  PubMed  Google Scholar 

  51. Girard D, Weagle G, Gupta A, Beґrube G, Chapados C (2008) Preparation and in vitro biological evaluation of tetrapyrrole ethanolamide derivatives as potential anticancer agents. Bioorg Med Chem Lett 18(1):360–365

    Article  CAS  PubMed  Google Scholar 

  52. Weagle G, Gupta A, Beґrub G, Chapados C (2010) Evaluation of in vivo biological activities of tetrapyrrole ethanolamides as novel anticancer agents. J Photochem Photobiol B 100(1):44–50

    Article  CAS  PubMed  Google Scholar 

  53. Gao Y-H, Lovrekovic V, Kussayeva A, Chen D-Y, Margetic D, Chen Z-L (2019) The photodynamic activities of dimethyl 131-[2-(guanidinyl)ethylamino] chlorin e6 photosensitizers in A549 tumor. Eur J Med Chem 177:144–152

    Article  CAS  PubMed  Google Scholar 

  54. Ellsworth PA, Storm CB (1978) Methyl 10-epipheophorbide a: an unusual epimeric stability relative to chlorophyll a or a’. J Org Chem 43(2):281–283

    Article  CAS  Google Scholar 

  55. Dugin NO, Zavialova MG, Novikov RA, Timofeev VP, Misharin AY, Ponomarev GV (2012) Facile synthesis of 152-carboxamides of methyl pheophorbide a. Macroheterocycles 5(2):146–148

    Article  CAS  Google Scholar 

  56. Feng L, Tao D, Dong Z, Chen Q, Chao Y, Liu Z, Chen M (2016) Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection. Biomaterials 127:13–24

    Article  PubMed  Google Scholar 

  57. Garcia G, Sol V, Lamarche F, Granet R, Guilloton M, Champavier Y, Krausz P (2006) Synthesis and photocytotoxic activity of new chlorin–polyamine conjugates. Bioorg Med Chem Lett 16(12):3188–3192

    Article  CAS  PubMed  Google Scholar 

  58. Kimani S, Ghosh G, Ghogare A, Rudshteyn B, Bartusik D, Hasan T, Greer A (2012) Synthesis and characterization of mono-, di-, and tri-poly(ethylene glycol) chlorin e6 conjugates for the photokilling of human ovarian cancer cells. J Org Chem 77(23):10638–10647

    Article  CAS  PubMed  Google Scholar 

  59. Guo X, Wang L, Wang S, Li Y, Zhang F, Song B, Zhao W (2015) Syntheses of new chlorin derivatives containing maleimide functional group and their photodynamic activity evaluation. Bioorg Med Chem Lett 25(19):4078–4081

    Article  CAS  PubMed  Google Scholar 

  60. Jinadasa RGW, Hu X, Vicente MGH, Smith KM (2011) Syntheses and cellular investigations of 173-, 152-, and 131-amino acid derivatives of chlorin e6. J Med Chem 54(21):7464–7476

    Article  CAS  PubMed  Google Scholar 

  61. Jinadasa RGW, Zhou Z, Vicente MGH, Smith KM (2016) Syntheses and cellular investigations of di(aspartate) and aspartate-lysine chlorin e6 conjugates. Org Biomol Chem 14(3):1049–1064

    Article  CAS  PubMed  Google Scholar 

  62. Pandey RK, Sumlin AB, Constantine S, Aoudia M, Potter WR, Bellnier DA, Henderson BW, Rogers MA, Smith KM, Dougherty TJ (1996) Alkyl ether analogues of chlorophyll-a derivatives: Part 1. Synthesis, photophysical properties and photodynamic efficacy. Photochem Photobiol 64(1):194–204

    Article  CAS  PubMed  Google Scholar 

  63. MacDonald IJ, Morgan J, Bellnier DA, Paszkiewicz GM, Whitake JE, Litchfield DJ, Doughefty TT (1999) Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobiol 70(5):789–797

    Article  CAS  PubMed  Google Scholar 

  64. Cheruku RK, Tracy EC, Tabaczynski W, Missert JR, Baumann H, Pandey RK (2021) Chiral alkyl groups at position 3(1′) of pyropheophorbide-a specify uptake and retention by tumor cells and are essential for effective photodynamic therapy. J Med Chem 64(8):4787–4809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saenz C, Cheruku RR, Ohulchanskyy TY, Joshi P, Tabaczynski WA, Missert JR, Chen Y, Pera P, Tracy E, Marko A, Rohrbach D, Sunar U, Baumann H, Pandey RK (2017) Structural and epimeric isomers of HPPH [3-devinyl 3-{1-(1-hexyloxy) ethyl}-pyropheophorbide-a]: effects on uptake and photodynamic therapy of cancer. ACS Chem Biol 12(4):933–946

    Article  CAS  PubMed  Google Scholar 

  66. Zhang X-J, Han G-H, Guo C-Y, Ma Z-Q, Lin M-Y, Wang Y, Miao Z-Y, Zhang W-N, Sheng C-Q, Yao J-Z (2020) Design, synthesis and biological evaluation of novel 31-hexyloxy chlorin e6-based 152- or 131-amino acid derivatives as potent photosensitizers for photodynamic therapy. Eur J Med Chem 207:112715

    Article  CAS  PubMed  Google Scholar 

  67. Battogtokh G, Liu H-B, Bae S-M, Chaturvedi PK, Kim Y-W, Kim I-W, Ahn WS (2012) Synthesis of chlorin-based unsaturated fatty acid conjugates: their in vitro phototoxicity on TC-1 cancer cell line. J Photochem Photobiol B 110:50–57

    Article  CAS  PubMed  Google Scholar 

  68. Srivatsan A, Wang Y, Joshi P, Sajjad M, Chen Y, Liu C, Thankppan K, Missert JR, Tracy E, Morgan J, Rigual N, Baumann H, Pandey RK (2011) In vitro cellular uptake and dimerization of signal transducer and activator of transcription-3 (STAT3) identify the photo sensitizing and imaging-potential of isomeric photosensitizers derived from chlorophyll-a and bacteriochlorophyll-a. J Med Chem 54(19):6859–6873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Srivatsan A, Pera P, Joshi P, Wang Y, Missert JR, Tracy EC, Tabaczynski WA, Yao R, Sajjad M, Baumann H, Pandey RK (2015) Effect of chirality on cellular uptake, imaging and photodynamic therapy of photosensitizers derived from chlorophyll-a. Bioorg Med Chem 23(13):3603–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gao Y-H, Zhu X-X, Zhu W, Wu D, Chen D-Y, Yan Y-J, Wu X-F, O’Shea DF, Chen Z-L (2020) Synthesis and evaluation of novel chlorophyll a derivatives as potent photosensitizers for photodynamic therapy. Eur J Med Chem 187:111959

    Article  CAS  PubMed  Google Scholar 

  71. Zhu W, Wang L-X, Chen D-Y, Gao Y-H, Yan Y-J, Wu X-F, Wang M, Han Y-P, Chen Z-L (2018) Synthesis and biological evaluation of 173-dicarboxylethylpyropheophorbide-a amide derivatives for photodynamic therapy. Bioorg Med Chem Lett 28(16):2784–2788

    Article  CAS  PubMed  Google Scholar 

  72. Cao L, Guo X, Wang L, Wang S, Li Y, Zhao W (2017) Synthesis and in vitro phototoxicity of novel π-extension derivatives of chlorin e6. New J Chem 41(23):14279–14287

    Article  CAS  Google Scholar 

  73. Dong Y, Li G, Wang L, Cao L, Li Y, Zhao W (2020) Anti-tumor evaluation of a novel methoxyphenyl substituted chlorin photosensitizer for photodynamic therapy. J Photochem Photobiol B 211:112015

    Article  CAS  PubMed  Google Scholar 

  74. Li JZ, Wang JJ, Yoon I, Cui BC, Shim YK (2012) Synthesis of novel long wavelength cationic chlorins via stereoselective aldol-like condensation. Bioorg Med Chem Lett 22(5):1846–1849

    Article  CAS  PubMed  Google Scholar 

  75. Yan Y-J, Zheng M-Z, Chen Z-L, Yu X-H, Yang X-X, Ding Z-L, Xu L (2010) Studies on preparation and photodynamic mechanism of chlorin P6–13,15-N-(cyclohexyl)cycloimide (Chlorin-H) and its antitumor effect for photodynamic therapy in vitro and in vivo. Bioorg Med Chem 18(17):6282–6291

    Article  CAS  PubMed  Google Scholar 

  76. Patel N, Pera P, Joshi P, Dukh M, Tabaczynski WA, Siters KE, Kryman M, Cheruku RR, Durrani F, Missert JR, Watson R, Ohulchanskyy TY, Tracy EC, Baumann H, Pandey RK (2016) Highly effective dual-function near-infrared (NIR) photosensitizer for fluorescence imaging and photodynamic therapy (PDT) of cancer. J Med Chem 59(21):9774–9787

    Article  CAS  PubMed  Google Scholar 

  77. Zheng G, Li H, Zhang M, Lund-Katz S, Chance B, Glickson JD (2002) Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer. Bioconj Chem 13(3):392–396

    Article  CAS  Google Scholar 

  78. Anikeeva N, Sykulev Y, Delikatny ED, Popov AV (2014) Core-based lipid nanoparticles as a nanoplatform for delivery of near-infrared fluorescent imaging agents. Am J Nucl Med Mol Imaging 4(6):507–524

    PubMed  PubMed Central  Google Scholar 

  79. Massiot J, Rosilio S, Ibrahim N, Yamamoto A, Nicolas V, Konovalov O, Tanaka M, Makky A (2018) Newly synthesized lipid–porphyrin conjugates: evaluation of their self-assembling properties, their miscibility with phospholipids and their photodynamic activity in vitro. Chem Eur J 24(72):19179–19194

    Article  CAS  PubMed  Google Scholar 

  80. Massiot J, Abuillan W, Konovalov O (1864) Makky A (2022) Photo-triggerable liposomes based on lipid-porphyrin conjugate and cholesterol combination: formulation and mechanistic study on monolayers and bilayers. Biochim Biophys Acta Biomembr 1:183812

    Google Scholar 

  81. Rubtsova NI, Hart MC, Arroyo AD, Osharovich SA, Liebov BK, Miller J, Yuan M, Cochran JM, Chong S, Yodh AG, Busch TM, Delikatny EJ, Anikeeva N, Popov AV (2021) NIR fluorescent imaging and photodynamic therapy with a novel theranostic phospholipid probe for triple-negative breast cancer cells. Bioconjug Chem 32(8):1852–1863

    Article  CAS  PubMed  Google Scholar 

  82. Mawn TM, Popov AV, Beardsley NJ, Stefflova K, Milkevitch M, Zheng G, Delikatny JD (2011) In vivo detection of phospholipase c by enzyme-activated near infrared probes. Bioconjug Chem 22(12):2434–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aksenova AA, Sebyakin YL, Mironov AF (2001) Synthesis and properties of O- and S-glycosylated derivatives of pyropheophorbide a. Russ J Bioorg Chem 27:124–129

    Article  CAS  Google Scholar 

  84. Nishie H, Kataoka H, Yano S, Yamaguchi H, Nomoto A, Tanaka M, Kato A, Shimura T, Mizoshita T, Kubota E, Tanida S, Joh T (2018) Excellent antitumor effects for gastrointestinal cancers using photodynamic therapy with a novel glucose conjugated chlorin e6. Biochem Biophys Res Commun 496(4):1204–1209

    Article  CAS  PubMed  Google Scholar 

  85. Shinoda Y, Kujirai K, Aoki K, Morita M, Masuda M, Zhang L, Kaixin Z, Nomoto A, Takahashi T, Tsuneoka Y, Akimoto J, Kataoka H, Rachi R, Narumi A, Yoshimura T, Yano S, Fujiwara Y (2020) Novel photosensitizer β-mannose-conjugated chlorin e6 as a potent anticancer agent for human glioblastoma U251 cells. Pharmaceuticals 13(10):316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Soyama T, Sakuragi A, Oishi D, Kimura Y, Aoki H, Nomoto A, Yano S, Nishie H, Kataoka H, Aoyama M (2021) Photodynamic therapy exploiting the anti-tumor activity of mannose-conjugated chlorin e6 reduced M2-like tumor-associated macrophages. Transl Oncol 14(2):101005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pandey SK, Sajjad M, Chen Y, Zheng X, Yao R, Missert JR, Batt C, Nabi HA, Oseroff AR, Pandey RK (2009) Comparative positron-emission tomography (PET) imaging and phototherapeutic potential of 124I- labeled methyl-3-(1′-iodobenzyloxyethyl) pyropheophorbide-a vs the corresponding glucose and galactose conjugates. J Med Chem 52(2):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grin MA, Lonin IS, Makarov AI, Lakhina AA, Toukach FV, Kachala VV, Orlova AV, Mironov AF (2008) A synthesis of chlorin–carbohydrate conjugates by ‘click chemistry.’ Mendeleev Commun 18(3):135–137

    Article  CAS  Google Scholar 

  89. Zheng X, Morgan J, Pandey SK, Chen Y, Tracy E, Baumann H, Missert JR, Batt C, Jackson J, Bellnier DA, Henderson BW, Pandey RK (2009) Conjugation of 2-(1′-hexyloxyethyl)-2-devinylpyropheophorbidea (HPPH) to carbohydrates changes its subcellular distribution and enhances photodynamic activity in vivo. J Med Chem 52(14):4306–4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. El-Akra N, Noirot A, Faye J-C, Souchard J-P (2006) Synthesis of estradiol–pheophorbide a conjugates: evidence of nuclear targeting, DNA damage and improved photodynamic activity in human breast cancer and vascular endothelial cells. Photochem Photobiol Sci 5(11):996–999

    Article  CAS  PubMed  Google Scholar 

  91. Swamy N, Purohit A, Fernandez-Gacio A, Jones GB, Ray R (2006) Nuclear estrogen receptor targeted photodynamic therapy: selective uptake and killing of MCF-7 breast cancer cells by a C17α-alkynylestradiol-porphyrin conjugate. J Cell Biochem 99(3):966–977

    Article  CAS  PubMed  Google Scholar 

  92. Sadler S, Persons KS, Jones GB, Ray R (2011) Internalization of a C17α-alkynylestradiol-porphyrin conjugate into estrogen receptor positive MCF-7 breast cancer cells. Bioorg Med Chem Lett 21(15):4638–4641

    Article  CAS  PubMed  Google Scholar 

  93. Zolottsev VA, Zazulina OV, Morozevich GE, Zavialova MG, Misharin AY, Novikov RA, Timofeev VP, Koifman OI, Ponomarev GV (2017) Conjugates of pyropheophorbide a with androgen receptor ligands. Macroheterocycles 10(1):77–80

    Article  CAS  Google Scholar 

  94. Zolottsev VA, Ponomarev GV, Taratynova MO, Morozevich GA, Novikov RA, Timofeev VP, Solyev PN, Zavialova MG, Zazulina OV, Tkachev YV, Misharin AY (2018) Conjugates of 17-substituted testosterone and epitestosterone with pyropheophorbide a differing in the length of linkers. Steroids 138:82–90

    Article  CAS  PubMed  Google Scholar 

  95. Pavlickova V, Jurarasek M, Rimpelova S, Zarruba K, Sedlaґk D, Simkova M, Kodr D, Stankova E, Fahnrich J, Rottnerova Z, Bartunek P, Lapcık O, Drasar P, Ruml T (2019) Oxime-based 19-nortestosterone–pheophorbide a conjugate: bimodal controlled release concept for PDT. J Mater Chem 7(36):5465–5477

    CAS  Google Scholar 

  96. Bigliardi PL, Rout B, Pant A, Krishnan-Kutty V, Eberle AN, Srinivas R, Burkett BA, Bigliardi-Qi M (2017) Specific targeting of melanotic cells with peptide ligated photosensitizers for photodynamic therapy. Sci Rep 7:15750

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kascakova S, Hofland LJ, De Bruijn HS, Ye Y, Achilefu S, van der Wansem K, van der Ploeg-van den Heuvel A, van Koetsveld PM, Brugts MP, van der Lelij A-J, Sterenborg HJCM, Ten Hagen TLM, Robinson DJ, van Hagen MP (2014) Somatostatin analogues for receptor targeted photodynamic therapy. PLoS One 9(8):e104448

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yan S, Tang D, Hong Z, Wang J, Yao H, Lu L, Yi H, Fu S, Zheng C, He G, Zou H, Hou X, He Q, Xiong L, Qinglong L, Deng X (2021) CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells. Biomater Sci 9(6):2020–2031

    Article  CAS  PubMed  Google Scholar 

  99. Song M, Liu G, Liu Y, Cheng Z, Lin H, Liu J, Wu Z, Xue J, Hong W, Huang M, Li J, Xu P (2021) Using porphyrins as albumin-binding molecules to enhance antitumor efficacies and reduce systemic toxicities of antimicrobial peptides. Eur J Med Chem 217:113382

    Article  CAS  PubMed  Google Scholar 

  100. Srivatsan A, Ethirajan M, Pandey SK, Dubey S, Zheng X, Liu T-H, Shibata M, Missert J, Morgan J, Pandey RK (2011) Conjugation of cRGD peptide to chlorophyll-a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy. Mol Pharm 8(4):1186–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li W, Tan S, Xing Y, Liu Q, Li S, Chen Q, Yu M, Wang F, Hong Z (2018) cRGD peptide-conjugated pyropheophorbide-a photosensitizers for tumor targeting in photodynamic therapy. Mol Pharm 15(4):1505–1514

    Article  CAS  PubMed  Google Scholar 

  102. Zhao J, Li S, Jin Y, Wang JW, Li W, Hong Z (2019) Multimerization increases tumor enrichment of peptide–photosensitizer conjugates. Molecules 24(4):817

    Article  PubMed  PubMed Central  Google Scholar 

  103. Stefflova K, Chen J, Marotta D, Li H, Zheng G (2006) Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ. J Med Chem 49(13):3850–3856

    Article  CAS  PubMed  Google Scholar 

  104. Um W, Park J, Ko H, Lim S, Yoon HY, Shim MK, Lee S, Ko YJ, Kim MJ, Park JH, Lim D-K, Byun Y, Kwon IC, Kim K (2019) Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy. Biomaterials 224:119494

    Article  CAS  PubMed  Google Scholar 

  105. Kim Y-J, Lee H-I, Kim J-K, Kim C-H, Kim Y-J (2020) Peptide 18–4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Colloids Surf B 189:110829

    Article  CAS  Google Scholar 

  106. Kim SK, Lee JM, Oh KT, Lee ES (2017) Extremely small-sized globular poly(ethylene glycol)-cyclic RGD conjugates targeting integrin avb3 in tumor cells. Int J Pharm 528(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  107. Jeong Y-I, Yoo SY, Heo J, Kang DH (2019) Chlorin e6-conjugated and PEGylated immune checkpoint inhibitor nanocomposites for pulmonary metastatic colorectal cancer. ACS Omega 4(20):18593–18599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. You H, Yoon H-Y, Yoon J-H, Ko H, Kim Y-C (2011) Synthesis of pheophorbide-a conjugates with anticancer drugs as potential cancer diagnostic and therapeutic agents. Bioorg Med Chem 19(18):5383–5391

    Article  CAS  PubMed  Google Scholar 

  109. Guo X, Wang L, Wang S, Li Y, Cao L, Cai R, Zhao W (2017) Synergistic antiproliferative effect of chemo-phototherapy: synthesis and photodynamic activity evaluation of novel Chlorin e6-artesunate conjugates as antiproliferative agents. Bioorg Med Chem Lett 27(19):4548–4551

    Article  CAS  PubMed  Google Scholar 

  110. Fernandez Gacio A, Fernandez-Marcos C, Swamy N, Dunn D, Ray R (2006) Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate. J Cell Biochem 99(3):665–670

    Article  PubMed  Google Scholar 

  111. Rapozzi V, Ragno D, Guerrini C, Ferroni V, della Pietra E, Cesselli D, Castoria G, di Donato M, Saracino E, Benfenati V, Varchi G (2015) Androgen receptor targeted conjugate for bimodal photodynamic therapy of prostate cancer in vitro. Bioconjug Chem 26(8):1662–1672

    Article  CAS  PubMed  Google Scholar 

  112. Rapozzi V, Varchi G, Della Pietra E, Ferroni C, Xodo LE (2017) A photodynamic bifunctional conjugate for prostate cancer: an in vitro mechanistic study. Invest New Drugs 35:115–123

    Article  CAS  PubMed  Google Scholar 

  113. Jalde SS, Chauhan AK, Lee JH, Chaturvedi PK, Park J-S, Kim Y-W (2018) Synthesis of novel Chlorin e6-curcumin conjugates as photosensitizers for photodynamic therapy against pancreatic carcinoma. Eur J Med Chem 147:66–76

    Article  CAS  PubMed  Google Scholar 

  114. Zhang G, Wang M, Collins BR, Vicente MGH, Smith KM (2021) Synthesis and cellular properties of a 131-substituted chlorin e6-nevirapine conjugate. J Porphyr Phthalocyanines 25(07n08):696–702

    Article  CAS  Google Scholar 

  115. Zhang X-J, Liu M-H, Luo Y-S, Han G-Y, Ma Z-Q, Huang F, Wang Y, Miao Z-Y, Zhang W-N, Sheng C-Q, Yao J-Z (2021) Novel dual-mode antitumor chlorin-based derivatives as potent photosensitizers and histone deacetylase inhibitors for photodynamic therapy and chemotherapy. Eur J Med Chem 217:113363

    Article  CAS  PubMed  Google Scholar 

  116. Liu T, Wu LY, Choi JK, Berkman CE (2009) In vitro targeted photodynamic therapy with a pyropheophorbide-a conjugated inhibitor of prostate-specific membrane antigen. Prostate 69(6):585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu T, Wu LY, Choi JK, Berkman CE (2010) Targeted photodynamic therapy for prostate cancer: inducing apoptosis via activation of the caspase-8/-3 cascade pathway. Int J Oncol 36(4):777–784

    CAS  PubMed  Google Scholar 

  118. Harmatys KM, Overchuk M, Chen J, Ding L, Chen Y, Pomper MG, Zheng G (2018) Tuning pharmacokinetics to improve tumor accumulation of a prostate-specific membrane antigen-targeted phototheranostic agent. Bioconjug Chem 29(11):3746–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Suvorov NV, Machulkin AE, Ivanova AV, Popkov AM, Bondareva EA, Plotnikova EA, Yakubovskaya RI, Majouga AG, Mironov AF (2018) Synthesis of PSMA-targeted 131- and 152-substituted chlorin e6 derivatives and their biological properties. J Porphyr Phthalocyanines 22(11):1–9

    Article  Google Scholar 

  120. Abramova OB, Kaplan MA, Grin MA, Yuzhakov VV, Suvorov NV, Mironov AF, Drozhzhina VV, Churikova TP, Kozlovtseva EA, Bandurko LN, Yakovleva ND, Ivanov SA, Kaprin AD (2021) Photodynamic therapy of melanoma b16 with chlorin e6 conjugated with a PSMA-ligand. Bull Exp Biol Med 171:468–471

    Article  CAS  PubMed  Google Scholar 

  121. Stallivieri A, Colombeau L, Jetpisbayeva G, Moussaron A, Myrzakhmetov B, Arnoux P, Acherar S, Vanderesse R, Frochot C (2017) Folic acid conjugates with photosensitizers for cancer targeting in photodynamic therapy: synthesis and photophysical properties. Bioorg Med Chem 25(1):1–10

    Article  CAS  PubMed  Google Scholar 

  122. You H, Yoon H-E, Jeong P-H, Ko H, Yoon J-H, Kim Y-C (2015) Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy. Bioorg Med Chem 23(7):1453–1462

    Article  CAS  PubMed  Google Scholar 

  123. Wang J, Liu Q, Zhang Y, Shi H, Liu H, Guo W, Ma Y, Huang W, Hong Z (2017) Folic acid conjugated pyropheophorbide a as the photosensitizer tested for in vivo targeted photodynamic therapy. J Pharm Sci 106(6):1482–1489

    Article  CAS  PubMed  Google Scholar 

  124. Liu W, Ma X, Jin Y, Zhang J, Li Y, Tang Y, Song Y, Wang S (2021) Chlorin e6-biotin conjugates for tumor-targeting photodynamic therapy. Molecules 26(23):7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Isaac-Lam MF, Hammonds DM (2019) Synthesis and photodynamic activity of vitamin−chlorin conjugates at nanomolar concentrations against prostate cancer cells. ACS Omega 4(26):21712–21723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jakubowska M, Szczygieł M, Michalczyk-Wetula D, Susz A, Stochel G, Elasa M, Fiedora L, Urbanska K (2013) Zinc-pheophorbide a–highly efficient low-cost photosensitizer against human adenocarcinoma in cellular and animal models. Photodiagnosis Photodyn Ther 10(13):266–277

    Article  CAS  PubMed  Google Scholar 

  127. Borisov SM, Papkovsky DB, Ponomarev GV, DeToma AS, Safe R, Klimant I (2009) Photophysical properties of the new phosphorescent platinum(II) and palladium(II) complexes of benzoporphyrins and chlorins. J Photochem Photobiol A 206(1):87–92

    Article  CAS  Google Scholar 

  128. Li G, Slansky A, Dobhal MP, Goswami LN, Graham A, Chen Y, Kanter P, Alberico RA, Spernyak J, Morgan J, Mazurchuk R, Oseroff A, Grossman Z, Pandey RK (2005) Chlorophyll-a analogues conjugated with aminobenzyl-DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy. Bioconjug Chem 16(1):32–42

    Article  CAS  PubMed  Google Scholar 

  129. Goswami LN, White III WH, Spernyak JA, Ethirajan M, Chen Y, Missert JR, Morgan J, Mazurchuk R, Pandey RK (2010) Synthesis of Tumor-avid Photosensitizer-Gd(III)-DTPA conjugates: impact of the number of gadolinium units in T1/T2 relaxivity, intracellular localization and photosensitizing efficacy. Bioconjug Chem 21(5):816–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Spernyak JA, White III WH, Ethirajan M, Patel NJ, Goswami LN, Chen Y, Turowski S, Missert JR, Batt C, Mazurchuk R, Pandey RK (2010) Hexylether derivative of pyropheophorbide-a (HPPH) on conjugating with 3 gadolinium(III) aminobenzyldiethylenetriaminepentaacetic acid shows potential for in vivo tumor-imaging (MR, fluorescence) and photodynamic therapy. Bioconjug Chem 21(5):828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dmitriev RI, Ropiak HM, Ponomarev GV, Yashunsky DV, Papkovsky DB (2011) Cell-penetrating conjugates of coproporphyrins with oligoarginine peptides: rational design and application for sensing intracellular O2. Bioconjug Chem 22(12):2507–2518

    Article  CAS  PubMed  Google Scholar 

  132. Otvagin VF, Nyuchev AV, Kuzmina NS, Grishin ID, Gavryushin AE, Romanenko YV, Koifman OI, Belykh DV, Peskova NN, Shilyagina NY, Balalaeva IV, Fedorov AY (2018) Synthesis and biological evaluation of new water-soluble photoactive chlorin conjugate for targeted delivery. Eur J Med Chem 144:740–750

    Article  CAS  PubMed  Google Scholar 

  133. Otvagin VF, Kuzmina NS, Krylova LV, Volovetsky AB, Nyuchev AV, Gavryushin AF, Meshkov IN, Gorbunova YG, Romanenko YV, Koifman OI, Balalaeva IV, Fedorov AY (2019) Water-soluble chlorin/arylaminoquinazoline conjugate for photodynamic and targeted therapy. J Med Chem 62(24):11182–11193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Program for Basic Research in the Russian Federation for a long-term period (2021–2030) (no. 122030100170-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Zolottsev.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolchuk, A.M., Zolottsev, V.A. & Misharin, A.Y. Conjugates of Tetrapyrrolic Macrocycles as Potential Anticancer Target-Oriented Photosensitizers. Top Curr Chem (Z) 381, 10 (2023). https://doi.org/10.1007/s41061-023-00421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-023-00421-0

Keywords