Skip to main content
Log in

Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet–triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as “post-complexation functionalization (PCF).” In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue –red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 11
Scheme 12
Fig. 6
Fig. 7
Scheme 13
Fig. 8
Scheme 14
Fig. 9
Fig. 10
Scheme 15
Fig. 11
Scheme 16
Scheme 17
Scheme 18
Fig. 12
Fig. 13
Fig. 14
Scheme 19
Scheme 20
Fig. 15
Scheme 21
Scheme 22
Scheme 23
Fig. 16
Fig. 17
Scheme 24
Scheme 25
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Nature 395:151–154

    Article  CAS  Google Scholar 

  2. Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) J Am Chem Soc 125(24):7377–7387

    Article  CAS  PubMed  Google Scholar 

  3. Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F (2007) Top Cur Chem 281:143–203

    Article  CAS  Google Scholar 

  4. You Y, Park SY (2009) Dalton Trans. 1267–1282.

  5. Lo KKW, Louie MW, Zhang KY (2010) Coord Chem Rev 254(21–22):2603–2622

    Article  CAS  Google Scholar 

  6. Lo KKW, Zhang KY (2012) RSC Adv 2(32):12069–12083

    Article  CAS  Google Scholar 

  7. Chi Y, Chou PT (2010) Chem Soc Rev 39(2):638–655

    Article  CAS  PubMed  Google Scholar 

  8. You Y, Nam W (2012) Chem Soc Rev 41(21):7061–7084

    Article  CAS  PubMed  Google Scholar 

  9. Omae I (2016) Coord Chem Rev 310(1):154–169

    Article  CAS  Google Scholar 

  10. Omae I (2016) J Organomet Chem 823(15):50–75

    Article  CAS  Google Scholar 

  11. Omae I (2017) J Organomet Chem 841(15):12–30

    Article  CAS  Google Scholar 

  12. Kappaun S, Slugovc C, List EJW (2008) Int J Mol Sci 9(8):1527–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Z, Bian Z, Huang C (2009) Topics. Organomet Chem 28:113–142

    CAS  Google Scholar 

  14. Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113(7):5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaw MH, Twilton J, MacMillan DWC (2016) J Org Chem 81(16):6898–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Teegardin K, Day JI, Chan J, Weaver J (2016) Org Proc Res Dev 20(7):1156–1163

    Article  CAS  Google Scholar 

  17. Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T (2010) Cancer Res 70(11):4490–4498

    Article  CAS  PubMed  Google Scholar 

  18. Yoshihara T, Hirakawa Y, Hosaka M, Nangaku M, Tobita S (2017) J Photochem Photobiol C Photochem Rev 30:71–95

    Article  CAS  Google Scholar 

  19. Ho PY, Ho CL, Wong WY (2020) Coord Chem Rev 412:213267

    Article  CAS  Google Scholar 

  20. Lord RM, McGowan PC (2019) Chem Lett 48(8):916–924

    Article  CAS  Google Scholar 

  21. Abbas S, Din ID, Raheel A, Din AT (2019) Appl Organomet Chem 34:e5413

    Google Scholar 

  22. Shi H, Wang Y, Lin S, Lou J, Zhang Q (2021) Dalton Trans 50:6410

    Article  CAS  PubMed  Google Scholar 

  23. Guerchais V, Fillaut JL (2011) Coord Chem Rev 255(21–22):2448–2457

    Article  CAS  Google Scholar 

  24. Chodorowski-Kimmes S, Beley M, Collins JP, Sauvage JP (1996) Tetrahedron Lett 37(17):2963–2966

    Article  CAS  Google Scholar 

  25. Coudret C, Fraysse S, Launay JP (1998) Chem Commun 10:663–664

    Article  Google Scholar 

  26. Clark GR, Headford CEL, Roper WR, Wright LL, Yap VPD (1994) Inorg Chim Acta 220(1–2):261–272

    Article  CAS  Google Scholar 

  27. Clark AM, Rickard CEF, Roper WR, Wright LJ (2000) J Organometal Chem 598(2):262–275

    Article  Google Scholar 

  28. Cheung KM, Zhang QF, Chan KW, Lam MHW, Williams ID, Leung WH (2005) J Organomet Chem 690:2913–2921

    Article  CAS  Google Scholar 

  29. Qin T, Ding J, Wang L, Baumgarten M, Zhou G, Müllen K (2009) J Am Chem Soc 131(40):14329

    Article  CAS  PubMed  Google Scholar 

  30. Stossel P, Spreitzer H, Bach I. U.S. Patent. US 2005/0253135 A1

  31. Stossel P, Spreitzer H, Bach I. U.S. Patent. US 2006/7125998 B2

  32. Arm NJ, Gareth Williams JA (2005) Chem Commun 20:230–232

    Article  CAS  Google Scholar 

  33. Whittle VL, Gareth Williams JA (2008) Inorg Chem 47(15):6596–6607

    Article  CAS  PubMed  Google Scholar 

  34. Liang A, Huang G, Chen S, Hou H (2015) RSC Adv 5:49466–49470

    Article  CAS  Google Scholar 

  35. Zhao H, Simpson PV, Barlow A, Moxey GJ, Morshedi M, Roy N, Philip R, Cifuentes MP, Humphrey MG (2015) Chem Eur J 21(33):11843–11854

    Article  CAS  PubMed  Google Scholar 

  36. Aoki S, Matsuo Y, Ogura S, Ohwada H, Hisamatsu Y, Moromizato S, Shiro M, Kitamura M (2011) Inorg Chem 50(3):806–818

    Article  CAS  PubMed  Google Scholar 

  37. Nonoyama M (1974) Bull Chem Soc Jpn 43(3):767–768

    Article  Google Scholar 

  38. Moromizato S, Hisamatsu Y, Suzuki T, Matsuo Y, Abe R, Aoki S (2012) Inorg Chem 51(4):12697–12706

    Article  CAS  PubMed  Google Scholar 

  39. Nakagawa A, Hisamatsu Y, Moromizato S, Kohono M, Aoki S (2014) Inorg Chem 53(1):409–422

    Article  CAS  PubMed  Google Scholar 

  40. Kando A, Hisamatsu Y, Ohwada H, Mormonization S, Kohno M, Aoki S (2015) Inorg Chem 54(11):5342–5357

    Article  CAS  PubMed  Google Scholar 

  41. Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) J Am Chem Soc 125(42):12971–12979

    Article  CAS  PubMed  Google Scholar 

  42. Hisamatsu Y, Aoki S (2011) Eur J Inorg Chem 20:5360–5269

    Article  CAS  Google Scholar 

  43. Yin XM, Dong Z (eds) (2003) Essentials of apoptosis. Humana Press, Totowa

    Google Scholar 

  44. Zhivotovsky B, Orrenius S (2011) Cell Calcium 50:211–221

    Article  CAS  PubMed  Google Scholar 

  45. Orrenius S, Gogvadze V, Zhivotovsky B (2015) Biochem Biophys Res Commun 460(1):72–81

    Article  CAS  PubMed  Google Scholar 

  46. Har MW, Distelhorst CW (2010) Cold Spring Harbor Perspect Biol 2:a005579

    Google Scholar 

  47. Lee D, Kim IY, Saha S, Choi KS (2016) Pharmacol Ther 162:120–133

    Article  CAS  PubMed  Google Scholar 

  48. Kim E, Lee DM, Seo MJ (2021) Front Cell Dev Biol 8:607844

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hymowitz SG, Christinger HW, Fuh G, Ultsch MH, O’Connell M, Kelley RF, Ashkenazi AA, de Vos AM (1999) Mol Cell 4(4):563–571

    Article  CAS  PubMed  Google Scholar 

  50. Hymowitz SG, O’Connell M, Ultsch MH, Hurst A, Totpal K, Ashkenazi AA, de Vos AM, Kelley RF (2000) Biochemistry 39(4):633–640

    Article  CAS  PubMed  Google Scholar 

  51. Blanc HN, Ashkenazi AA (2003) Cell Death Diff 10:66–75

    Article  CAS  Google Scholar 

  52. Wiezorek J, Holland P, Graves J (2011) Clin Cancer Res 16:1701–1708

    Article  CAS  Google Scholar 

  53. Angell YM, Bhandari M, De Francisco MN, Frederick BT, Green JM, Leu K, Leuther K, Sana R, Schatz PJ, Whitehorn EA, Wright K, Holmes CP (2009) Adv Exp Med Biol 611:101–103

    Article  CAS  PubMed  Google Scholar 

  54. Masum AA, Hisamatsu Y, Yokoi K, Aoki S (2018) Bioinorg Chem Appl Article ID 20:7578965

    Google Scholar 

  55. Masum AA, Yokoi K, Hisamatsu Y, Naito K, Shashni B, Aoki S (2018) Bioorg Med Chem 26(17):4804–4816

    Article  CAS  PubMed  Google Scholar 

  56. Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Controlled Release 114(1):100–109

    Article  CAS  Google Scholar 

  57. Nakase I, Tanaka G, Futaki S (2013) Mol BioSyst 9(5):855–861

    Article  CAS  PubMed  Google Scholar 

  58. Gasper D, Veiga AS, Castanho ARB (2013) Front Microbiol 4:Article 294

    Google Scholar 

  59. Hisamatsu Y, Shibuya A, Suzuki N, Suzuki T, Abe R, Aoki S (2015) Bioconjug Chem 26(5):857–879

    Article  CAS  PubMed  Google Scholar 

  60. Hisamatsu Y, Suzuki N, Suzuki T, Abe R, Aoki S (2017) Bioconjug Chem 28(2):507–523

    Article  CAS  PubMed  Google Scholar 

  61. Haribabu J, Tamura Y, Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Yamada Y, Kavrvembu R, Aoki S (2021) Eur J Inorg Chem 2021(18):1796–1814

    Article  CAS  Google Scholar 

  62. Naito K, Yokoi K, Balachandran C, Hisamatsu Y, Aoki S (2019) J Inorg Biochem 199:Article 110785

    Article  PubMed  CAS  Google Scholar 

  63. Yokoi K, Hisamatsu Y, Naito K, Aoki S (2017) Eur J Inorg Chem 20:5295–5309

    Article  CAS  Google Scholar 

  64. Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Mitrić A, Aoki S (2020) ACS Omega 5(12):6983–7001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S (2022) Biochemistry 61(8):639–655

    Article  CAS  PubMed  Google Scholar 

  66. Balachandran C, Yokoi K, Naito K, Tamura Y, Jebiti H, Umezawa M, Tsuchiya K, Yoshihara T, Tobita S, Aoki S (2021) Molecules 26:7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yoon MJ, Lee AR, Jeong SA, Kim Y, Kim JY, Kwon Y, Choi KS (2014) Oncotarget 5(16):6816–6830

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA (2012) J Cell Physiol 227(5):2196–2206

    Article  CAS  PubMed  Google Scholar 

  69. Xue J, Li R, Zhao X, Ma C, Lv X, Liu L, Liu P (2018) Chem-Biol Interact 283:59–74

    Article  CAS  PubMed  Google Scholar 

  70. Garg A, Garg S, Zaneveld LJ, Singla AK (2001) Phytother Res 15(8):655–669

    Article  CAS  PubMed  Google Scholar 

  71. Yumnam S, Hong GE, Raha S, Saralamma GVV, Lee HJ, Lee WS, Kim EH, Kim GS (2016) J Cell Physiol 231(6):1261–1268

    Article  CAS  PubMed  Google Scholar 

  72. Spernandio S, de Belle I, Bredesen DE (2000) Proc Natl Acad Sci USA 97(26):14376–14381

    Article  Google Scholar 

  73. Wang Y, Wen X, Zhang N, Wang L, Hao D, Jiang X, He G (2019) Biomed Pharmacother 118:109203

    Article  CAS  PubMed  Google Scholar 

  74. Yamaguchi K, Yokoi K, Umezawa M, Tsuchiya K, Aoki S (2022) Bioconjug Chem 33(4):691–717

    Article  CAS  PubMed  Google Scholar 

  75. Ye R-R, Tan CP, Chen MH, Hao L, Ji LN, Mao ZW (2016) Chem Eur J 22(23):7800–7809

    Article  CAS  PubMed  Google Scholar 

  76. Li C, Ip K-W, Man W-L, Song D, He M-L, Yiu S-M, Lau T-C, Zhu G (2017) Chem Sci 8(10):6865–6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cini M, Williams H, Fay MW, Searle MS, Woodward S, Bradshaw TD (2016) Metallomics 8(3):286–297

    Article  CAS  PubMed  Google Scholar 

  78. Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R, Marchiò L (2011) J Am Chem Soc 133(16):6235–6242

    Article  CAS  PubMed  Google Scholar 

  79. Liu Z, Romero-Canelón I, Habtemariam A, Clarkson GJ, Sadler PJ (2014) Organomet 33(19):5324–5333

    Article  CAS  Google Scholar 

  80. Ford WE, Rodgers MA (1992) J Phys Chem 96(7):2917–2920

    Article  CAS  Google Scholar 

  81. Howarth AJ, Davies DL, Lelj F, Wolf MO, Patrick BO (2014) Inorg Chem 53(22):11882–11889

    Article  CAS  PubMed  Google Scholar 

  82. McClenaghan ND, Barigelletti F, Maubert B, Campagna S (2002) Chem Commun 20:602–603

    Article  CAS  Google Scholar 

  83. Denisov SA, Cudré Y, Verwilst P, Jonusauskas G, Marin-Suárez M, Fernández-Sánchez JF, Baranoff E, MaClenaghan ND (2014) Inorg Chem 53(5):2677–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Medina-Rodríguez S, Denisov SA, Cudré Y, Male L, Marin-Suárez M, Fernández-Guitiérrez JF, Tron A, Jonusauskas G, McClenaghan ND, Baranoff E (2016) Analyst 141:3090–3097

    Article  PubMed  Google Scholar 

  85. Jiang X, Peng J, Wang J, Guo X, Zhao D, Ma Y (2016) ACS Appl Mater Interfaces 8(6):3591–3600

    Article  CAS  PubMed  Google Scholar 

  86. Lavie-Combot A, Lincheneau C, Cantuel M, Leydet Y, McClenaghan ND (2010) Chem Soc Rev 39(2):506–515

    Article  Google Scholar 

  87. Kazama A, Imai Y, Okayasu Y, Yamada Y, Yuasa J, Aoki S (2020) Inorg Chem 59(10):6905–6922

    Article  CAS  PubMed  Google Scholar 

  88. Bolink HJ, De Angelis F, Baranoff E, Kline C, Fantacci S, Coronado E, Sessolo M, Kalyanasundaram K, Gratzel M, Nazeeruddin MK (2009) Chem Commun 20:4672–5467

    Article  CAS  Google Scholar 

  89. Kappaun S, Sax S, Eder S, Moller KC, Waich K, Niedermair F, Saf R, Mereiter K, Jacob J, Mullen K, List EJW, Slugovc C (2007) Chem Mater 19(6):1209–1211

    Article  CAS  Google Scholar 

  90. Lo KKW, Zhang KY, Leung SK, Tang MC (2008) Angew Chem Int Eng 47(12):2213–2216

    Article  CAS  Google Scholar 

  91. Lo KKW, Chan JSW, Lui LH, Chung CK (2004) Organomet 23(13):3108–3116

    Article  CAS  Google Scholar 

  92. You Y, Han Y, Lee YM, Par SY, Nam W, Lippard SJ (2011) J Am Chem Soc 133(30):11488–11491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun CY, Wang WL, Zhang X, Qin C, Li P, Su ZM, Zhu DX, Shan GG, Shao KZ, Wu H, Li J (2013) Nat Commun 4:2717

    Article  PubMed  CAS  Google Scholar 

  94. Kumar S, Hisamatsu Y, Tamaki Y, Ishitani O, Aoki S (2016) Inorg Chem 55(8):3829–3843

    Article  CAS  PubMed  Google Scholar 

  95. Edkins RM, Wriglesworth A, Fucke K, Bettington SL, Beeby A (2011) Dalton Trans 40:9672–9678

    Article  CAS  PubMed  Google Scholar 

  96. Cudré Y, de Carvalho FF, Burgess GR, Male L, Pope SJA, Tavernelli I, Baranoff E (2017) Inorg Chem 56(19):11565–11576

    Article  PubMed  CAS  Google Scholar 

  97. Park GY, Kim Y, Ha Y (2007) Mol Cryst Liq Crsyt 462:179–188

    Article  CAS  Google Scholar 

  98. Lepeltier M, Dumur F, Graff B, Xiao P, Gigmes D, Lalevée J, Mayer CR (2014) Helv Chim Acta 97(7):939–956

    Article  CAS  Google Scholar 

  99. Lepeltier M, Graff B, Lalevée J, Wantz G, Ibrahim-Ouali M, Gigmes D, Dumur F (2016) Org Elect 37:24–34

    Article  CAS  Google Scholar 

  100. Tamura Y, Hisamatsu Y, Kumar S, Itoh T, Sato K, Kuroda R, Aoki S (2016) Inorg Chem 56(2):812–833

    Article  PubMed  CAS  Google Scholar 

  101. Tamura Y, Hisamatsu Y, Kazama A, Yoza K, Sato K, Kuroda R, Aoki S (2018) Inorg Chem 57(8):4571–4589

    Article  CAS  PubMed  Google Scholar 

  102. Baranoff E, Curchod BFE, Frey J, Scopelliti S, Kessler F, Tavernelli I, Rothlisberger U, Grätzel M, Nazeeruddin MD (2011) Inorg Chem 51(1):215–224

    Article  PubMed  CAS  Google Scholar 

  103. Tordera D, Delgado M, Orti E, Bolink HJ, Frey J, Nazzeruddin MK, Baranoff E (2012) Chem Mater 24(10):1896–1903

    Article  CAS  Google Scholar 

  104. Hisamatsu Y, Kumar S, Aoki S (2017) Inorg Chem 56(2):886–899

    Article  CAS  PubMed  Google Scholar 

  105. Lowry MS, William R, Hudson WR, Robert A, Pascal RA Jr, Bernhard S (2004) J Am Chem Soc 126(43):14129–14135

    Article  CAS  PubMed  Google Scholar 

  106. Curtin PN, Tinker LL, Burgess CM, Cline ED, Bernhard S (2009) Inorg Chem 48(22):10498–10506

    Article  CAS  PubMed  Google Scholar 

  107. Yen HY, Huang MJ, Chen IC (2016) J Photochem Photobiol A Chem 318:33–41

    Article  CAS  Google Scholar 

  108. Cutillas N, de Yellol GS, Haro C, Vincente C, Rodriguez V, Ruiz J (2013) Coord Chem Rev 257(19–20):2784–2797

    Article  CAS  Google Scholar 

  109. Garg JA, Blacque O, Fox T, Vankatesan K (2010) Inorg Chem 49(24):11463–11472

    Article  CAS  PubMed  Google Scholar 

  110. Omae I (2016) Curr Org Chem 20(27):2848–2864

    Article  CAS  Google Scholar 

  111. Cerón-Camacho R, Roque-Ramires MA, Raybov AD, Legadec RL (2021) Molecules 26(6):1563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank our collaborators and co-workers for their contributions to work described in this review. We appreciate Dr. Motoo Shiro (Rigaku Co. Ltd.), Prof. Masahiro Kawano (Tokyo Institute of Technology), Prof. Osamu Ishitani (Tokyo Institute of Technology), Dr. Yasuyuki Yamada (Nagoya University), Dr. Junpei Yuasa (Tokyo University of Science), Dr. Masakazu Umezawa (Tokyo University of Science), Dr. Koji Tsuchiya (Tokyo University of Science), Prof. Toshiyuki Kaji (Tokyo University of Science), Prof. Takeshi Nakamura (Tokyo University of Science), Prof. Kohei Soga (Tokyo University of Science), Prof. Hideki Sakai (Tokyo University of Science), Dr. Rikio Niki (Tokyo University of Science), and Dr. Toshinari Ichihara (Tokyo University of Science) for their great assistance and helpful discussion. Financial supports from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, the Uehara Memorial Foundation, the Tokyo Ohka Foundation for the Promotion of Science and Technology, Kanagawa, Japan, the Tokyo Biochemical Research Foundation, Tokyo, Japan, Japan Society for the Promotion of Science (JSPS), and Tokyo University of Science are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Aoki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal Legand Chromophores for Bioassays”; edited by Kenneth Kam-Wing Lo and Peter Kam-Keung LEUNG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, S., Yokoi, K., Hisamatsu, Y. et al. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Z) 380, 36 (2022). https://doi.org/10.1007/s41061-022-00401-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00401-w

Keywords

Navigation