Skip to main content

Advertisement

Log in

Characterization Methodology and Activity Evaluation of Solar-Driven Catalysts for Environmental Remediation

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Solar-driven photocatalysis mediated by semiconductors has been rapidly developed as a green and sustainable technology for environmental remediation. Continuous efforts have been devoted to novel semiconducting photocatalysts to boost the efficiency of the photocatalytic system. However, controversy has widely existed in materials characterization and photocatalytic activity evaluation. This review overviews the recent advances in characterization methodology and photocatalytic activity evaluation of solar-driven catalysts (SDCs) for environmental remediation. After a general and brief introduction of different SDCs, the compositional, structural, and optical characterizations of SDCs are summarized. Moreover, the characterization methods and challenges in the doped and coupled SDCs are discussed. Finally, the challenges in the evaluation of current evaluation methods for the photocatalytic activity of SDCs are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Parrino F, D’Arienzo M, Mostoni S, Dirè S, Ceccato R, Bellardita M, Palmisano L (2021) Electron and energy transfer mechanisms: the double nature of TiO2 heterogeneous photocatalysis. Top Curr Chem 380:2. https://doi.org/10.1007/s41061-021-00358-2

    Article  CAS  Google Scholar 

  2. Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Yang J, Bahnemann DW, Pan JH (2019) Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal Today 335:78. https://doi.org/10.1016/j.cattod.2018.10.053

    Article  CAS  Google Scholar 

  3. Xia X, Pan JH, Pan X, Hu L, Yao J, Ding Y, Wang D, Ye J, Dai S (2019) Photochemical conversion and storage of solar energy. ACS Energy Lett 4:405. https://doi.org/10.1021/acsenergylett.8b02411

    Article  CAS  Google Scholar 

  4. Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G, Kong F, Wang Q, Dai S, Pan JH (2018) Anatase and rutile in evonik aeroxide P25: heterojunctioned or individual nanoparticles? Catal Today 300:12. https://doi.org/10.1016/j.cattod.2017.06.010

    Article  CAS  Google Scholar 

  5. Zhao T, Qian R, Zhou G, Wang Y, Lee WI, Pan JH (2021) Mesoporous WO3/TiO2 spheres with tailored surface properties for concurrent solar photocatalysis and membrane filtration. Chemosphere 263:128344. https://doi.org/10.1016/j.chemosphere.2020.128344

    Article  CAS  PubMed  Google Scholar 

  6. Bera S, Won D-I, Rawal SB, Kang HJ, Lee WI (2019) Design of visible-light photocatalysts by coupling of inorganic semiconductors. Catal Today 335:3. https://doi.org/10.1016/j.cattod.2018.11.001

    Article  CAS  Google Scholar 

  7. Helmy ET, Abouellef EM, Soliman UA, Pan JH (2021) Novel green synthesis of S-doped TiO2 nanoparticles using Malva parviflora plant extract and their photocatalytic, antimicrobial and antioxidant activities under sunlight illumination. Chemosphere 271:129524. https://doi.org/10.1016/j.chemosphere.2020.129524

    Article  CAS  PubMed  Google Scholar 

  8. Pirhashemi M, Habibi-Yangjeh A, PouranChemistry SRJJoIE (2018) Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J Ind Eng Chem 62:1. https://doi.org/10.1016/j.jiec.2018.01.012

    Article  CAS  Google Scholar 

  9. Kumar A, Sharma SK, Sharma G, Ala’a H, Naushad M, Ghfar AA, Stadler FJJJohm (2019) Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: elucidating the photocatalytic mechanism under different light sources. J Hazard Mater 364:429. https://doi.org/10.1016/j.jhazmat.2018.10.060

    Article  CAS  PubMed  Google Scholar 

  10. Vesali-Kermani E, Habibi-Yangjeh A, Diarmand-Khalilabad H, Ghosh S (2020) Nitrogen photofixation ability of g-C3N4 nanosheets/Bi2MoO6 heterojunction photocatalyst under visible-light illumination. J Colloid Interface Sci 563:81. https://doi.org/10.1016/j.jcis.2019.12.057

    Article  CAS  PubMed  Google Scholar 

  11. Ma D, Schneider J, Lee WI, Pan JH (2021) Controllable synthesis and self-template phase transition of hydrous TiO2 colloidal spheres for photo/electrochemical applications. Adv Coll Interface Sci 295:102493. https://doi.org/10.1016/j.cis.2021.102493

    Article  CAS  Google Scholar 

  12. Li J, Li X, Yin Z, Wang X, Ma H, Wang L (2019) Synergetic effect of facet junction and specific facet activation of ZnFe2O4 nanoparticles on photocatalytic activity improvement. ACS Appl Mater Interfaces 11:29004. https://doi.org/10.1021/acsami.9b11836

    Article  CAS  PubMed  Google Scholar 

  13. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  14. Edwards AJ, Klug HP, Alexander LE (1975) x-Ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York, p 966. https://doi.org/10.1016/S0003-2670(01)95199-2

    Book  Google Scholar 

  15. Ho JY, Huang MH (2009) Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J Phys Chem C 113:14159. https://doi.org/10.1021/jp903928p

    Article  CAS  Google Scholar 

  16. Chen XB, Mao SS (2006) Synthesis of titanium dioxide (TiO2) nanomaterials. J Nanosci Nanotechnol 6:906. https://doi.org/10.1166/jnn.2006.160

    Article  CAS  PubMed  Google Scholar 

  17. Cox SJ, Raza Z, Kathmann SM, Slater B, Michaelides A (2013) The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals. Faraday Discuss 167:389. https://doi.org/10.1039/c3fd00059a

    Article  CAS  PubMed  Google Scholar 

  18. Medina-Ramirez I, Liu JL, Hernandez-Ramirez A, Romo-Bernal C, Pedroza-Herrera G, Jauregui-Rincon J, Gracia-Pinilla MA (2014) Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2-Fe3+ nanocatalyst. J Mater Sci 49:5309. https://doi.org/10.1007/s10853-014-8234-z

    Article  CAS  Google Scholar 

  19. Sathishkumar P, Mangalaraja RV, Mansilla HD, Gracia-Pinilla MA, Anandan S (2014) Sonophotocatalytic (42 kHz) degradation of Simazine in the presence of Au-TiO2 nanocatalysts. Appl Catal B Environ 160:692. https://doi.org/10.1016/j.apcatb.2014.06.027

    Article  CAS  Google Scholar 

  20. Feldhoff A, Mendive C, Bredow T, Bahnemann D (2007) Direct measurement of size, three-dimensional shape, and specific surface area of anatase nanocrystals. ChemPhysChem 8:805. https://doi.org/10.1002/cphc.200700084

    Article  CAS  PubMed  Google Scholar 

  21. Han GH, Gunes F, Bae JJ, Kim ES, Chae SJ, Shin HJ, Choi JY, Pribat D, Lee YH (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144. https://doi.org/10.1021/nl201980p

    Article  CAS  PubMed  Google Scholar 

  22. Marchelek M, Grabowska E, Klimczuk T, Lisowski W, Mazierski P, Zaleska-Medynska A (2018) Visible light photocatalysis employing TiO2/SrTiO3-BiOI composites: surface properties and photoexcitation mechanism. Mol Catal 452:154. https://doi.org/10.1016/j.mcat.2018.04.006

    Article  CAS  Google Scholar 

  23. Akurati KK, Bhattacharya SS, Winterer M, Hahn H (2006) Synthesis, characterization and sintering of nanocrystalline titania powders produced by chemical vapour synthesis. J Phys D-Appl Phys 39:2248. https://doi.org/10.1088/0022-3727/39/10/037

    Article  CAS  Google Scholar 

  24. Sing KSW (2013) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:25. https://doi.org/10.1351/pac198557040603

    Article  Google Scholar 

  25. Kusior A, Banas J, Trenczek-Zajac A, Zubrzycka P, Micek-Ilnicka A, Radecka M (2018) Structural properties of TiO2 nanomaterials. J Mol Struct 1157:327. https://doi.org/10.1016/j.molstruc.2017.12.064

    Article  CAS  Google Scholar 

  26. Sim LC, Tan WH, Leong KH, Bashir MJK, Saravanan P, Surib NA (2017) Mechanistic characteristics of surface modified organic semiconductor g-C3N4 nanotubes alloyed with titania. Materials. https://doi.org/10.3390/ma10010028

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tai JY, Leong KH, Saravanan P, Abd Aziz A, Sim LC (2017) Dopant-free oxygen-rich titanium dioxide: LED light-induced photocatalysis and mechanism insight. J Mater Sci 52:11630. https://doi.org/10.1007/s10853-017-1334-9

    Article  CAS  Google Scholar 

  28. Belhadj H, Hakki A, Robertson PKJ, Bahnemann DW (2015) In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation. Phys Chem Chem Phys 17:22940. https://doi.org/10.1039/c5cp03947a

    Article  CAS  PubMed  Google Scholar 

  29. Finnie KS, Cassidy DJ, Bartlett JR, Woolfrey JL (2001) IR spectroscopy of surface water and hydroxyl species on nanocrystalline TiO2 films. Langmuir 17:816. https://doi.org/10.1021/la0009240

    Article  CAS  Google Scholar 

  30. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126. https://doi.org/10.1016/j.jcis.2015.04.035

    Article  CAS  PubMed  Google Scholar 

  31. Koomey JG, Dunham C, Lutz JD (1995) The effect of efficiency standards on water use and water-heating energy use in the US: a detailed end-use treatment. Energy 20:627. https://doi.org/10.1016/0360-5442(95)00005-2

    Article  Google Scholar 

  32. Souri D, Tahan ZE (2015) A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl Phys B 119:273. https://doi.org/10.1007/s00340-015-6053-9

    Article  CAS  Google Scholar 

  33. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627. https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  34. Jian J, Jiang GS, van de Krol R, Wei BQ, Wang HQ (2018) Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy 51:457. https://doi.org/10.1016/j.nanoen.2018.06.074

    Article  CAS  Google Scholar 

  35. Jing L, Ong WJ, Zhang R, Pickwell-MacPherson E, Yu JC (2018) Graphitic carbon nitride nanosheet wrapped mesoporous titanium dioxide for enhanced photoelectrocatalytic water splitting. Catal Today 315:103. https://doi.org/10.1016/j.cattod.2018.04.007

    Article  CAS  Google Scholar 

  36. Virkki K, Tervola E, Ince M, Torres T, Tkachenko NV (2018) Comparison of electron injection and recombination on TiO2 nanoparticles and ZnO nanorods photosensitized by phthalocyanine. R Soc Open Sci. https://doi.org/10.1098/rsos.180323;180323

    Article  PubMed  PubMed Central  Google Scholar 

  37. Regulska E, Rivera-Nazario DM, Karpinska J, Plonska-Brzezinska ME, Echegoyen L (2017) Enhanced photocatalytic performance of porphyrin/phthalocyanine and Bis(4-pyridyl) pyrrolidinofullerene modified Titania. ChemistrySelect 2:2462. https://doi.org/10.1002/slct.201700227

    Article  CAS  Google Scholar 

  38. Yang J, Wang KQ, Liang L, Feng LG, Zhang YW, Sun B, Xing W (2012) A hybrid photoelectrochemical biofuel cell based on the photosensitization of a chlorophyll derivative on TiO2 film. Catal Commun 20:76. https://doi.org/10.1016/j.catcom.2011.12.020

    Article  CAS  Google Scholar 

  39. Wang D, Sun YN, Shang QK, Wang XY, Guo TT, Guan HY, Lu Q (2017) Effects of the conjugated structure of Fe-bipyridyl complexes on photoinduced electron transfer in TiO2 photocatalytic systems. J Catal 356:32. https://doi.org/10.1016/j.jcat.2017.09.009

    Article  CAS  Google Scholar 

  40. Song YM, Li J, Wang C (2018) Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J Mater Res 33:2612. https://doi.org/10.1557/jmr.2018.294

    Article  CAS  Google Scholar 

  41. Walter MG, Rudine AB, Wamser CC (2010) Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyrins Phthalocyanines 14:759. https://doi.org/10.1142/S1088424610002689

    Article  CAS  Google Scholar 

  42. Ahmed MA, Abou-Gamra ZM, Medien HAA, Hamza MA (2017) Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation. J Photochem Photobiol B Biol 176:25. https://doi.org/10.1016/j.jphotobiol.2017.09.016

    Article  CAS  Google Scholar 

  43. Devi LG, Nithya PM (2018) Photocatalytic activity of Hemin (Fe(III) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton & photocatalysis processes. Inorg Chem Front 5:127. https://doi.org/10.1039/c7qi00590c

    Article  CAS  Google Scholar 

  44. Safaralizadeh E, Darzi SJ, Mahjoub AR, Abazari R (2017) Visible light-induced degradation of phenolic compounds by Sudan black dye sensitized TiO2 nanoparticles as an advanced photocatalytic material. Res Chem Intermed 43:1197. https://doi.org/10.1007/s11164-016-2692-7

    Article  CAS  Google Scholar 

  45. Huang C, Lv Y, Zhou Q, Kang SZ, Li XQ, Mu J (2014) Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group. Ceram Int 40:7093. https://doi.org/10.1016/j.ceramint.2013.12.042

    Article  CAS  Google Scholar 

  46. Tasseroul L, Lambert SD, Eskenazi D, Amoura M, Paez CA, Hiligsmann S, Thonart P, Heinrichs B (2013) Degradation of p-nitrophenol and bacteria with TiO2 xerogels sensitized in situ with tetra(4-carboxyphenyl)porphyrins. J Photochem Photobiol A Chem 272:90. https://doi.org/10.1016/j.jphotochem.2013.08.023

    Article  CAS  Google Scholar 

  47. Cheng G, Liu X, Song XJ, Chen X, Dai WX, Yuan RS, Fu XZ (2020) Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: synergic effect of Fe and oxygen vacancies. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2020.119196

    Article  Google Scholar 

  48. Zhang W, Jia BP, Wang QZ, Dionysiou D (2015) Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review. J Nanopart Res. https://doi.org/10.1007/s11051-015-3026-1

    Article  Google Scholar 

  49. Liu RR, Ji ZJ, Wang J, Zhang JJ (2018) Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue. Front Mater Sci 12:292. https://doi.org/10.1007/s11706-018-0429-9

    Article  Google Scholar 

  50. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269. https://doi.org/10.1126/science.1061051

    Article  CAS  PubMed  Google Scholar 

  51. Gole JL, Stout JD, Burda C, Lou YB, Chen XB (2004) Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108:1230. https://doi.org/10.1021/jp030843n

    Article  CAS  Google Scholar 

  52. Morra E, Giamello E, Chiesa M (2017) EPR approaches to heterogeneous catalysis. The chemistry of titanium in heterogeneous catalysts and photocatalysts. J Magn Reson 280:89. https://doi.org/10.1016/j.jmr.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  53. Barbierikova Z, Dvoranova D, Sofianou MV, Trapalis C, Brezova V (2015) UV-induced reactions of Mg2+-doped anatase nanocrystals with exposed 001 facets: an EPR study. J Catal 331:39. https://doi.org/10.1016/j.jcat.2015.08.009

    Article  CAS  Google Scholar 

  54. Livraghi S, Paganini MC, Giamello E, Selloni A, Di Valentin C, Pacchioni G (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128:15666. https://doi.org/10.1021/ja064164c

    Article  CAS  PubMed  Google Scholar 

  55. Plizingrova E, Klementova M, Bezdicka P, Bohacek J, Barbierikova Z, Dvoranova D, Mazur M, Krysa J, Subrt J, Brezova V (2017) 2D-titanium dioxide nanosheets modified with Nd, Ag and Au: preparation, characterization and photocatalytic activity. Catal Today 281:165. https://doi.org/10.1016/j.cattod.2016.08.013

    Article  CAS  Google Scholar 

  56. Huang YF, Wei YL, Wang J, Luo D, Fan LQ, Wu J (2017) Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance. Appl Surf Sci 423:119. https://doi.org/10.1016/j.apsusc.2017.06.158

    Article  CAS  Google Scholar 

  57. Xu F, Mei JJ, Li XY, Sun YM, Wu DP, Gao ZY, Zhang Q, Jiang K (2017) Heterogeneous three-dimensional TiO2/ZnO nanorod array for enhanced photoelectrochemical water splitting properties. J Nanopart Res 19:297. https://doi.org/10.1007/s11051-017-3982-8

    Article  CAS  Google Scholar 

  58. Xia D, Wang W, Yin R, Jiang Z, An T, Li G, Zhao H, Wong PK (2017) Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species. Appl Catal B 214:23. https://doi.org/10.1016/j.apcatb.2017.05.035

    Article  CAS  Google Scholar 

  59. Zhou G, Zhao T, Wang O, Xia X, Pan JH (2020) Bi2Se3, Bi2Te3 quantum dots-sensitized rutile TiO2 nanorod arrays for enhanced solar photoelectrocatalysis in azo dye degradation. J Phys Energy 3:014003. https://doi.org/10.1088/2515-7655/abc52c

    Article  CAS  Google Scholar 

  60. Li X, Chen X, Niu H, Han X, Zhang T, Liu JY, Lin HM, Qu FY (2015) The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity. J Colloid Interface Sci 452:89. https://doi.org/10.1016/j.jcis.2015.04.034

    Article  CAS  PubMed  Google Scholar 

  61. Kaur A, Umar A, Anderson WA, Kansal SK (2018) Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J Photochem Photobiol A 360:34. https://doi.org/10.1016/j.jphotochem.2018.04.021

    Article  CAS  Google Scholar 

  62. Shan PD, Niu CG, Huang DW, Zeng GM, Zhang H (2015) Facile synthesis of Ag/AgCl/BiPO4 plasmonic photocatalyst with significantly enhanced visible photocatalytic activity and high stability. RSC Adv 5:89105. https://doi.org/10.1039/c5ra12479d

    Article  CAS  Google Scholar 

  63. Pawar RC, Lee CS (2014) Single-step sensitization of reduced graphene oxide sheets and CdS nanoparticles on ZnO nanorods as visible-light photocatalysts. Appl Catal B Environ 144:57. https://doi.org/10.1016/j.apcatb.2013.06.022

    Article  CAS  Google Scholar 

  64. Yoshimura J, Kudo A, Tanaka A, Domen K, Maruya K, Onishi T (1988) H2 evolution caused by electron transfer between different semiconductors under visible light irradiation. Chem Phys Lett 147:401–404. https://doi.org/10.1016/0009-2614(88)80256-2

    Article  CAS  Google Scholar 

  65. Tian Y, Newton T, Kotov NA, Guldi DM, Fendler JH (1996) Coupled composite CdS−CdSe and core−shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J Phys Chem 100:8927. https://doi.org/10.1021/jp951965l

    Article  CAS  Google Scholar 

  66. Gopidas KR, Bohorquez M, Kamat PV (1990) Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems. J Phys Chem 94:6435. https://doi.org/10.1021/j100379a051

    Article  CAS  Google Scholar 

  67. Low JX, Jiang C, Cheng B, Wageh S, Al-Ghamdi AA, Yu JG (2017) A review of direct Z-scheme photocatalysts. Small Methods 1:1700080. https://doi.org/10.1002/smtd.201700080

    Article  CAS  Google Scholar 

  68. Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59. https://doi.org/10.1016/0047-2670(79)80037-4

    Article  CAS  Google Scholar 

  69. An GW, Mahadik MA, Chae WS, Kim HG, Cho M, Jang JS (2018) Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO2 nanorod arrays: effects of the light trapping and optimum charge transfer. Appl Surf Sci 440:688. https://doi.org/10.1016/j.apsusc.2018.01.194

    Article  CAS  Google Scholar 

  70. Anas S, Mangalaraja RV, Ananthakumar S (2010) Studies on the evolution of ZnO morphologies in a thermohydrolysis technique and evaluation of their functional properties. J Hazard Mater 175:889. https://doi.org/10.1016/j.jhazmat.2009.10.093

    Article  CAS  PubMed  Google Scholar 

  71. Wan Q, Wang TH, Zhao JC (2005) Enhanced photocatalytic activity of ZnO nanotetrapods. Appl Phys Lett 87:083105. https://doi.org/10.1063/1.2034092

    Article  CAS  Google Scholar 

  72. Yu JG, Wang SH, Low JX, Xiao W (2013) Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15:16883. https://doi.org/10.1039/c3cp53131g

    Article  CAS  PubMed  Google Scholar 

  73. Jo WK, Lee JY, Natarajan TS (2016) Fabrication of hierarchically structured novel redox-mediator-free ZnIn2S4 marigold flower/Bi2WO6 flower-like direct Z-scheme nanocomposite photocatalysts with superior visible light photocatalytic efficiency. Phys Chem Chem Phys 18:1000. https://doi.org/10.1039/c5cp06176h

    Article  CAS  PubMed  Google Scholar 

  74. Chen W, Liu TY, Huang T, Liu XH, Duan GR, Yang XJ, Chen SM (2015) A novel yet simple strategy to fabricate visible light responsive C, N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation. RSC Adv 5:101214. https://doi.org/10.1039/c5ra18302b

    Article  CAS  Google Scholar 

  75. Jin J, Yu JG, Guo DP, Cui C, Ho WK (2015) A Hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 11:5262. https://doi.org/10.1002/smll.201500926

    Article  CAS  PubMed  Google Scholar 

  76. Low JX, Dai BZ, Tong T, Jiang CJ, Yu JG (2019) In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv Mater 31:1802981. https://doi.org/10.1002/adma.201802981

    Article  CAS  Google Scholar 

  77. Meng SG, Ning XF, Zhang T, Chen SF, Fu XL (2015) What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag3PO4/g-C3N4, band-band transfer or a direct Z-scheme? Phys Chem Chem Phys 17:11577. https://doi.org/10.1039/c5cp01523e

    Article  CAS  PubMed  Google Scholar 

  78. Zong H, Zhao T, Zhou G, Qian R, Feng T, Pan JH (2019) Revisiting structural and photocatalytic properties of g-C3N4/TiO2: is surface modification of TiO2 by calcination with urea an effective route to “solar” photocatalyst? Catal Today 335:252. https://doi.org/10.1016/j.cattod.2018.12.015

    Article  CAS  Google Scholar 

  79. Xu QL, Zhang LY, Cheng B, Fan JJ, Yu JG (2020) S-Scheme heterojunction. Photocatal Chem 6:1543. https://doi.org/10.1016/j.chempr.2020.06.010

    Article  CAS  Google Scholar 

  80. Bonanni S, Ait-Mansour K, Harbich W, Brune H (2012) Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. J Am Chem Soc 134:3445. https://doi.org/10.1021/ja2098854

    Article  CAS  PubMed  Google Scholar 

  81. Zhang QZ, Jin X, Xu ZH, Zhang JM, Rendon UF, Razzari L, Chaker M, Ma DL (2018) Plasmonic Au-loaded hierarchical hollow porous TiO2 spheres: synergistic catalysts for nitroaromatic reduction. J Phys Chem Lett 9:5317. https://doi.org/10.1021/acs.jpclett.8b02393

    Article  CAS  PubMed  Google Scholar 

  82. Green IX, Tang WJ, Neurock M, Yates JT (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333:736. https://doi.org/10.1126/science.1207272

    Article  CAS  PubMed  Google Scholar 

  83. Yang JL, Mou CY (2018) Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Appl Catal B Environ 231:283. https://doi.org/10.1016/j.apcatb.2018.02.054

    Article  CAS  Google Scholar 

  84. Lee H, Lee YK, Hwang E, Park JY (2014) Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission. J Phys Chem C 118:5650. https://doi.org/10.1021/jp409894b

    Article  CAS  Google Scholar 

  85. Gaidi M, Trabelsi K, Hajjaji A, Chourou ML, Alhazaa AN, Bessais B, El Khakani MA (2018) Optimizing the photochemical conversion of UV-vis light of silver-nanoparticles decorated TiO2 nanotubes based photoanodes. Nanotechnology 29:015703. https://doi.org/10.1088/1361-6528/aa96c3

    Article  CAS  PubMed  Google Scholar 

  86. Cai T, Liu YT, Wang LL, Zhang SQ, Ma JH, Dong WY, Zeng YX, Yuan JL, Liu CB, Luo SL (2018) “Dark deposition” of Ag nanoparticles on TiO2: improvement of electron storage capacity to boost “memory catalysis” activity. ACS Appl Mater Interfaces 10:25350. https://doi.org/10.1021/acsami.8b06076

    Article  CAS  PubMed  Google Scholar 

  87. Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116:14587. https://doi.org/10.1021/acs.chemrev.6b00327

    Article  CAS  PubMed  Google Scholar 

  88. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia YN (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666. https://doi.org/10.1021/jp0608628

    Article  CAS  PubMed  Google Scholar 

  89. Chi YH, Wang W, Zhang QZ, Yu HY, Liu MN, Ni SQ, Gao BY, Xu SP (2021) Evaluation of practical application potential of a photocatalyst: ultimate apparent photocatalytic activity. Chemosphere 285:131323. https://doi.org/10.1016/j.chemosphere.2021.131323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 52076074 and 51772094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui Lu or Jia Hong Pan.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guli, M., Helmy, E.T., Schneider, J. et al. Characterization Methodology and Activity Evaluation of Solar-Driven Catalysts for Environmental Remediation. Top Curr Chem (Z) 380, 39 (2022). https://doi.org/10.1007/s41061-022-00394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00394-6

Keywords

Navigation