Abstract
Near-infrared (NIR, 700–1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.
This is a preview of subscription content, access via your institution.















Abbreviations
- CT:
-
Computed tomography
- MRI:
-
Magnetic resonance imaging
- PET:
-
Positron emission tomography
- NIR:
-
Near-infrared
- SBR:
-
Signal-to-background ratio
- PLIM:
-
Photoluminescence lifetime imaging microscopy
- ISC:
-
Intersystem crossing
- SOC:
-
Spin–orbit coupling
- ATP:
-
Adenosine triphosphate
- ALP:
-
Alkaline phosphatase
- SIM:
-
Structured illumination microscopy
- IEDDA:
-
Inverse electron-demand Diels–Alder
- BCN:
-
(1R,8S,9s)-Bicyclo[6.1.0]non-4-yne
- MRSA:
-
Methicillin-resistant S. aureus
- STED:
-
Stimulated emission depletion
- PeT:
-
Photoinduced electron transfer
- MLCT:
-
Metal-to-ligand charge transfer
- LMCT:
-
Ligand-to-metal charge transfer
- TADF:
-
Thermally assisted delayed fluorescence
- DOTA:
-
1,4,7,10-Tetraacetic acid
- DTPA:
-
Diethylenetriaminepentaacetic acid
- hfac:
-
Hexafluoroacetylacetonate
References
Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, Maire E, Manley M, Du Plessis A, Stock SR (2021) X-ray computed tomography. Nat Rev Methods Primers 1:18
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119:957–1057
Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P (2021) Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 17:688–703
Bodini B, Tonietto M, Airas L, Stankoff B (2021) Positron emission tomography in multiple sclerosis—straight to the target. Nat Rev Neurol 17:663–675
Wei W, Rosenkrans ZT, Liu J, Huang G, Luo Q-Y, Cai W (2020) ImmunoPET: concept, design, and applications. Chem Rev 120:3787–3851
Zhang Y, Zhang G, Zeng Z, Pu K (2022) Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 51:566–593
Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010
Li C, Chen G, Zhang Y, Wu F, Wang Q (2020) Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J Am Chem Soc 142:14789–14804
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X (2022) Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: from strategic design toward molecular imaging and theranostics. Chem Rev 122:209–268
Yang Q, Ma H, Liang Y, Dai H (2021) Rational design of high brightness NIR-II organic dyes with S-D-A-D-S structure. Acc Mater Res 2:170–183
Lei Z, Zhang F (2021) Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew Chem Int Ed 60:16294–16308
Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, Zhang X, Yaghi OK, Alamparambil ZR, Hong X, Cheng Z, Dai H (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X (2022) The chemistry of organic contrast agents in the NIR-II window. Angew Chem Int Ed 61:e202114722
Ning Y, Jin G-Q, Wang M-X, Gao S, Zhang J-L (2022) Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr Opin Chem Biol 66:102097
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W (2018) Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem Rev 118:1770–1839
Montalti MAC, Prodi L, Gandolfi MT (2006) Handbook of photochemistry. CRC Press, Boca Raton
Feng G, Zhang G-Q, Ding D (2020) Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev 49:8179–8234
Li J, Wang L, Zhao Z, Sun B, Zhan G, Liu H, Bian Z, Liu Z (2020) Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes. Nat Commun 11:5218
Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M (2021) Dye-sensitized solar cells strike back. Chem Soc Rev 50:12450–12550
Yang Z-S, Yao Y, Sedgwick AC, Li C, Xia Y, Wang Y, Kang L, Su H, Wang B-W, Gao S, Sessler JL, Zhang J-L (2020) Rational design of an “all-in-one” phototheranostic. Chem Sci 11:8204–8213
Balzani V, Campagna S (2007) Photochemistry and photophysics of coordination compounds I. Springer, Berlin
Wong KM-C, Yam VW-W (2011) Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior. Acc Chem Res 44:424–434
Yam VW-W, Au VK-M, Leung SY-L (2015) Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem Rev 115:7589–7728
Chen W-C, Sukpattanacharoen C, Chan W-H, Huang C-C, Hsu H-F, Shen D, Hung W-Y, Kungwan N, Escudero D, Lee C-S, Chi Y (2020) Modulation of solid-state aggregation of square-planar Pt(II) based emitters: enabling highly efficient deep-red/near infrared electroluminescence. Adv Funct Mater 30:2002494
Wang SF, Fu L-W, Wei Y-C, Liu S-H, Lin J-A, Lee G-H, Chou P-T, Huang J-Z, Wu C-I, Yuan Y, Lee C-S, Chi Y (2019) Near-infrared emission induced by shortened Pt–Pt contact: diplatinum(II) complexes with pyridyl pyrimidinato cyclometalates. Inorg Chem 58:13892–13901
Wu J, Li Y, Tan C, Wang X, Zhang Y, Song J, Qu J, Wong W-Y (2018) Aggregation-induced near-infrared emitting platinum(II) terpyridyl complex: cellular characterisation and lysosome-specific localisation. Chem Commun 54:11144–11147
Wu C, Chen H-F, Wong K-T, Thompson ME (2010) Study of ion-paired iridium complexes (soft salts) and their application in organic light emitting diodes. J Am Chem Soc 132:3133–3139
Li J, Ma Y, Liu S, Mao Z, Chi Z, Qian P-C, Wong W-Y (2020) Soft salts based on platinum(II) complexes with high emission quantum efficiencies in the near infrared region for in vivo imaging. Chem Commun 56:11681–11684
Yeung MC-L, Wong KM-C, Tsang YKT, Yam VW-W (2010) Aptamer-induced self-assembly of a NIR-emissive platinum(II) terpyridyl complex for label- and immobilization-free detection of lysozyme and thrombin. Chem Commun 46:7709–7711
Yeung MC-L, Yam VW-W (2013) Phosphate derivative-induced supramolecular assembly and NIR-emissive behaviour of alkynylplatinum(II) terpyridine complexes for real-time monitoring of enzymatic activities. Chem Sci 4:2928–2935
Chung CY-S, Li SP-Y, Louie M-W, Lo KK-W, Yam VW-W (2013) Induced self-assembly and disassembly of water-soluble alkynylplatinum(II) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies. Chem Sci 4:2453–2462
Law AS-Y, Lee LC-C, Yeung MC-L, Lo KK-W, Yam VW-W (2019) Amyloid protein-induced supramolecular self-assembly of water-soluble platinum(II) complexes: a luminescence assay for amyloid fibrillation detection and inhibitor screening. J Am Chem Soc 141:18570–18577
Law AS-Y, Lee LC-C, Lo KK-W, Yam VW-W (2021) Aggregation and supramolecular self-assembly of low-energy red luminescent alkynylplatinum(II) complexes for RNA detection, nucleolus imaging, and RNA synthesis inhibitor screening. J Am Chem Soc 143:5396–5405
Solomatina AI, Slobodina AD, Ryabova EV, Bolshakova OI, Chelushkin PS, Sarantseva SV, Tunik SP (2020) Blood-brain barrier penetrating luminescent conjugates based on cyclometalated platinum(II) complexes. Bioconj Chem 31:2628–2637
Liu L-Y, Fang H, Chen Q, Chan MH-Y, Ng M, Wang K-N, Liu W, Tian Z, Diao J, Mao Z-W, Yam VW-W (2020) Multiple-color platinum complex with super-large stokes shift for super-resolution imaging of autolysosome escape. Angew Chem Int Ed 59:19229–19236
Chen Q, Jin C, Shao X, Guan R, Tian Z, Wang C, Liu F, Ling P, Guan J-L, Ji L, Wang F, Chao H, Diao J (2018) Super-resolution tracking of mitochondrial dynamics with an iridium(III) luminophore. Small 14:1802166
Jin C, Li G, Wu X, Liu J, Wu W, Chen Y, Sasaki T, Chao H, Zhang Y (2021) Robust packing of a self-assembling iridium complex via endocytic trafficking for long-term lysosome tracking. Angew Chem Int Ed 60:7597–7601
Liu Y, Zhang P, Fang X, Wu G, Chen S, Zhang Z, Chao H, Tan W, Xu L (2017) Near-infrared emitting iridium(III) complexes for mitochondrial imaging in living cells. Dalton Trans 46:4777–4785
Jin C, Guan R, Wu J, Yuan B, Wang L, Huang J, Wang H, Ji L, Chao H (2017) Rational design of NIR-emitting iridium(III) complexes for multimodal phosphorescence imaging of mitochondria under two-photon excitation. Chem Commun 53:10374–10377
Jin C, Liang F, Wang J, Wang L, Liu J, Liao X, Rees TW, Yuan B, Wang H, Shen Y, Pei Z, Ji L, Chao H (2020) Rational design of cyclometalated iridium(III) complexes for three-photon phosphorescence bioimaging. Angew Chem Int Ed 59:15987–15991
Wu W, Zhang C, Rees TW, Liao X, Yan X, Chen Y, Ji L, Chao H (2020) Lysosome-targeting iridium(III) Probe with near-infrared emission for the visualization of NO/O2·− crosstalk via in vivo peroxynitrite imaging. Anal Chem 92:6003–6009
Fan Y, Zhao J, Yan Q, Chen PR, Zhao D (2014) Water-soluble triscyclometalated organoiridium complex: phosphorescent nanoparticle formation, nonlinear optics, and application for cell imaging. ACS Appl Mater Interfaces 6:3122–3131
Yip AM-H, Lai CK-H, Yiu KS-M, Lo KK-W (2022) Phosphorogenic iridium(III) bis-tetrazine complexes for bioorthogonal peptide stapling, bioimaging, photocytotoxic applications, and the construction of nanosized hydrogels. Angew Chem Int Ed 61:e202116078
Ge C, Huang H, Wang Y, Zhao H, Zhang P, Zhang Q (2018) Near-infrared luminescent osmium(II) complexes with an intrinsic RNA-targeting capability for nucleolus imaging in living cells. ACS Appl Bio Mater 1:1587–1593
Smitten KL, Scattergood PA, Kiker C, Thomas JA, Elliott PIP (2020) Triazole-based osmium(II) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem Sci 11:8928–8935
Dröge F, Noakes FF, Archer SA, Sreedharan S, Raza A, Robertson CC, MacNeil S, Haycock JW, Carson H, Meijer AJHM, Smythe CGW, Bernardino de la Serna J, Dietzek-Ivanšić B, Thomas JA (2021) A dinuclear osmium(II) complex near-infrared nanoscopy probe for nuclear DNA. J Am Chem Soc 143:20442–20453
Gkika KS, Noorani S, Walsh N, Keyes TE (2021) Os(II)-bridged polyarginine conjugates: the additive effects of peptides in promoting or preventing permeation in cells and multicellular tumor spheroids. Inorg Chem 60:8123–8134
Yao Y, Hou C-L, Yang Z-S, Ran G, Kang L, Li C, Zhang W, Zhang J, Zhang J-L (2019) Unusual near infrared (NIR) fluorescent palladium(II) macrocyclic complexes containing M-C bonds with bioimaging capability. Chem Sci 10:10170–10178
Wegeberg C, Wenger OS (2021) Luminescent first-row transition metal complexes. JACS Au 1:1860–1876
McCusker James K (2019) Electronic structure in the transition metal block and its implications for light harvesting. Science 363:484–488
Caspar JV, Kober EM, Sullivan BP, Meyer TJ (1982) Application of the energy gap law to the decay of charge-transfer excited states. J Am Chem Soc 104:630–632
Hamze R, Peltier Jesse L, Sylvinson D, Jung M, Cardenas J, Haiges R, Soleilhavoup M, Jazzar R, Djurovich Peter I, Bertrand G, Thompson Mark E (2019) Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 363:601–606
Chábera P, Liu Y, Prakash O, Thyrhaug E, Nahhas AE, Honarfar A, Essén S, Fredin LA, Harlang TCB, Kjær KS, Handrup K, Ericson F, Tatsuno H, Morgan K, Schnadt J, Häggström L, Ericsson T, Sobkowiak A, Lidin S, Huang P, Styring S, Uhlig J, Bendix J, Lomoth R, Sundström V, Persson P, Wärnmark K (2017) A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 543:695–699
Kjær Kasper S, Kaul N, Prakash O, Chábera P, Rosemann Nils W, Honarfar A, Gordivska O, Fredin Lisa A, Bergquist K-E, Häggström L, Ericsson T, Lindh L, Yartsev A, Styring S, Huang P, Uhlig J, Bendix J, Strand D, Sundström V, Persson P, Lomoth R, Wärnmark K (2019) Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 363:249–253
Young Elizabeth R, Oldacre A (2019) Iron hits the mark. Science 363:225–226
Dorn M, Kalmbach J, Boden P, Päpcke A, Gómez S, Förster C, Kuczelinis F, Carrella LM, Büldt LA, Bings NH, Rentschler E, Lochbrunner S, González L, Gerhards M, Seitz M, Heinze K (2020) A vanadium(III) complex with blue and NIR-II spin-flip luminescence in solution. J Am Chem Soc 142:7947–7955
Dorn M, Kalmbach J, Boden P, Kruse A, Dab C, Reber C, Niedner-Schatteburg G, Lochbrunner S, Gerhards M, Seitz M, Heinze K (2021) Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(III) complex I: synthesis, spectroscopy and static quantum chemistry. Chem Sci 12:10780–10790
Harris JP, Reber C, Colmer HE, Jackson TA, Forshaw AP, Smith JM, Kinney RA, Telser J (2017) Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex. Can J Chem 95:547–552
Kaufhold S, Rosemann NW, Chábera P, Lindh L, Bolaño Losada I, Uhlig J, Pascher T, Strand D, Wärnmark K, Yartsev A, Persson P (2021) Microsecond photoluminescence and photoreactivity of a metal-centered excited state in a hexacarbene–Co(III) complex. J Am Chem Soc 143:1307–1312
Shi S, Jung MC, Coburn C, Tadle A, Sylvinson MRD, Djurovich PI, Forrest SR, Thompson ME (2019) Highly efficient photo- and electroluminescence from two-coordinate Cu(I) complexes featuring nonconventional N-heterocyclic carbenes. J Am Chem Soc 141:3576–3588
Gernert M, Balles-Wolf L, Kerner F, Müller U, Schmiedel A, Holzapfel M, Marian CM, Pflaum J, Lambert C, Steffen A (2020) Cyclic (amino)(aryl)carbenes enter the field of chromophore ligands: expanded π system leads to unusually deep red emitting CuI compounds. J Am Chem Soc 142:8897–8909
Herr P, Kerzig C, Larsen CB, Häussinger D, Wenger OS (2021) Manganese(i) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Nat Chem 13:956–962
Wegeberg C, Häussinger D, Wenger OS (2021) Pyrene-decoration of a chromium(0) tris(diisocyanide) enhances excited state delocalization: a strategy to improve the photoluminescence of 3d6 metal complexes. J Am Chem Soc 143:15800–15811
Boden P, Di Martino-Fumo P, Bens T, Steiger S, Albold U, Niedner-Schatteburg G, Gerhards M, Sarkar B (2021) NIR-emissive chromium(0), molybdenum(0), and tungsten(0) complexes in the solid state at room temperature. Chem Eur J 27:12959–12964
Büldt LA, Wenger OS (2017) Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered NO release. Chem Sci 8:7359–7367
Otto S, Scholz N, Behnke T, Resch-Genger U, Heinze K (2017) Thermo-chromium: a contactless optical molecular thermometer. Chem Eur J 23:12131–12135
Basu U, Otto S, Heinze K, Gasser G (2019) Biological evaluation of the NIR-emissive ruby analogue [Cr(ddpd)2][BF4]3 as a photodynamic therapy photosensitizer. Eur J Inorg Chem 2019:37–41
Kalmbach J, Wang C, You Y, Förster C, Schubert H, Heinze K, Resch-Genger U, Seitz M (2020) Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts. Angew Chem Int Ed 59:18804–18808
Jiménez J-R, Doistau B, Cruz CM, Besnard C, Cuerva JM, Campaña AG, Piguet C (2019) Chiral molecular ruby [Cr(dqp)2]3+ with long-lived circularly polarized luminescence. Chem Eur J 141:13244–13252
Otto S, Grabolle M, Förster C, Kreitner C, Resch-Genger U, Heinze K (2015) [Cr(ddpd)2]3+: a molecular, water-soluble, highly NIR-emissive ruby analogue. Angew Chem Int Ed 54:11572–11576
Wang C, Otto S, Dorn M, Kreidt E, Lebon J, Sršan L, Di Martino-Fumo P, Gerhards M, Resch-Genger U, Seitz M, Heinze K (2018) Deuterated molecular ruby with record luminescence quantum yield. Angew Chem Int Ed 57:1112–1116
Otto S, Förster C, Wang C, Resch-Genger U, Heinze K (2018) A strongly luminescent chromium(III) complex acid. Chem Eur J 24:12555–12563
Treiling S, Wang C, Förster C, Reichenauer F, Kalmbach J, Boden P, Harris JP, Carrella LM, Rentschler E, Resch-Genger U, Reber C, Seitz M, Gerhards M, Heinze K (2019) Luminescence and light-driven energy and electron transfer from an exceptionally long-lived excited state of a non-innocent chromium(III) complex. Angew Chem Int Ed 58:18075–18085
Reichenauer F, Wang C, Förster C, Boden P, Ugur N, Báez-Cruz R, Kalmbach J, Carrella LM, Rentschler E, Ramanan C, Niedner-Schatteburg G, Gerhards M, Seitz M, Resch-Genger U, Heinze K (2021) Strongly red-emissive molecular ruby [Cr(bpmp)2]3+ surpasses [Ru(bpy)3]2+. J Am Chem Soc 143:11843–11855
Sinha N, Jiménez J-R, Pfund B, Prescimone A, Piguet C, Wenger OS (2021) A near-infrared-II emissive chromium(III) complex. Angew Chem Int Ed 60:23722–23728
Ning Y, Zhu M, Zhang J-L (2019) Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing. Coord Chem Rev 399:213028
Jin G-Q, Ning Y, Geng J-X, Jiang Z-F, Wang Y, Zhang J-L (2020) Joining the journey to near infrared (NIR) imaging: the emerging role of lanthanides in the designing of molecular probes. Inorg Chem Front 7:289–299
Peng X-X, Zhu X-F, Zhang J-L (2020) Near Infrared (NIR) imaging: exploring biologically relevant chemical space for lanthanide complexes. J Inorg Biochem 209:111118
Yang Y, Wang P, Lu L, Fan Y, Sun C, Fan L, Xu C, El-Toni AM, Alhoshan M, Zhang F (2018) Small-molecule lanthanide complexes probe for second near-infrared window bioimaging. Anal Chem 90:7946–7952
Li Y, Li X, Xue Z, Jiang M, Zeng S, Hao J (2018) Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection. Biomaterials 169:35–44
Zhuang P, Xiang K, Meng X, Wang G, Li Z, Lu Y, Kan D, Zhang X, Sun S-K (2021) Gram-scale synthesis of a neodymium chelate as a spectral CT and second near-infrared window imaging agent for visualizing the gastrointestinal tract in vivo. J Mater Chem B 9:2285–2294
Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47
Hamon N, Roux A, Beyler M, Mulatier J-C, Andraud C, Nguyen C, Maynadier M, Bettache N, Duperray A, Grichine A, Brasselet S, Gary-Bobo M, Maury O, Tripier R (2020) Pyclen-based Ln(III) complexes as highly luminescent bioprobes for in vitro and in vivo one- and two-photon bioimaging applications. J Am Chem Soc 142:10184–10197
Wu S, Galán LA, Roux M, Riobé F, Le Guennic B, Guyot Y, Le Bahers T, Micouin L, Maury O, Benedetti E (2021) Tuning excited-state properties of [2.2]paracyclophane-based antennas to ensure efficient sensitization of lanthanide ions or singlet oxygen generation. Inorg Chem 60:16194–16203
Xiong R, Mara D, Liu J, Van Deun R, Borbas KE (2018) Excitation- and emission-wavelength-based multiplex spectroscopy using red-absorbing near-infrared-emitting lanthanide complexes. J Am Chem Soc 140:10975–10979
Salerno EV, Eliseeva SV, Schneider BL, Kampf JW, Petoud S, Pecoraro VL (2020) Visible, near-infrared, and dual-range luminescence spanning the 4f series sensitized by a gallium(III)/lanthanide(III) metallacrown structure. J Phys Chem A 124:10550–10564
Chow CY, Eliseeva SV, Trivedi ER, Nguyen TN, Kampf JW, Petoud S, Pecoraro VL (2016) Ga3+/Ln3+ metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains. J Am Chem Soc 138:5100–5109
Hu J-Y, Ning Y, Meng Y-S, Zhang J, Wu Z-Y, Gao S, Zhang J-L (2017) Highly near-IR emissive ytterbium(III) complexes with unprecedented quantum yields. Chem Sci 8:2702–2709
Ning Y, Chen S, Chen H, Wang J-X, He S, Liu Y-W, Cheng Z, Zhang J-L (2019) A proof-of-concept application of water-soluble ytterbium(III) molecular probes in in vivo NIR-II whole body bioimaging. Inorg Chem Front 6:1962–1967
Ning Y, Cheng S, Wang J-X, Liu Y-W, Feng W, Li F, Zhang J-L (2019) Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe. Chem Sci 10:4227–4235
Ning Y, Liu Y-W, Yang Z-S, Yao Y, Kang L, Sessler JL, Zhang J-L (2020) Split and use: structural isomers for diagnosis and therapy. J Am Chem Soc 142:6761–6768
Zhu M, Zhang H, Ran G, Mangel DN, Yao Y, Zhang R, Tan J, Zhang W, Song J, Sessler JL, Zhang J-L (2021) Metal modulation: an easy-to-implement tactic for tuning lanthanide phototheranostics. J Am Chem Soc 143:7541–7552
Lacerda S, Delalande A, Eliseeva SV, Pallier A, Bonnet CS, Szeremeta F, Même S, Pichon C, Petoud S, Tóth É (2021) Doxorubicin-sensitized luminescence of NIR-emitting ytterbium liposomes: towards direct monitoring of drug release. Angew Chem Int Ed 60:23574–23577
Chang F-F, Feng F-D, Geng J, Huang W (2021) Self-assembly and luminescence of trinuclear lanthanide based supramolecular circular helicates. Chem Commun 57:9220–9223
Chau H-F, Wu Y, Fok W-Y, Thor W, Cho WC-S, Pa Ma, Lin J, Mak N-K, Bünzli J-CG, Jiang L, Long NJ, Lung HL, Wong K-L (2021) Lanthanide-based peptide-directed visible/near-infrared imaging and inhibition of LMP1. JACS Au 1:1034–1043
Al Sabea H, Norel L, Galangau O, Hijazi H, Métivier R, Roisnel T, Maury O, Bucher C, Riobé F, Rigaut S (2019) Dual light and redox control of NIR luminescence with complementary photochromic and organometallic antennae. J Am Chem Soc 141:20026–20030
Nonat AM, Charbonnière LJ (2020) Upconversion of light with molecular and supramolecular lanthanide complexes. Coord Chem Rev 409:213192
Nonat A, Bahamyirou S, Lecointre A, Przybilla F, Mély Y, Platas-Iglesias C, Camerel F, Jeannin O, Charbonnière LJ (2019) Molecular upconversion in water in heteropolynuclear supramolecular Tb/Yb assemblies. J Am Chem Soc 141:1568–1576
Souri N, Tian P, Platas-Iglesias C, Wong K-L, Nonat A, Charbonnière LJ (2017) Upconverted photosensitization of Tb visible emission by NIR Yb excitation in discrete supramolecular heteropolynuclear complexes. J Am Chem Soc 139:1456–1459
Knighton RC, Soro LK, Francés-Soriano L, Rodríguez-Rodríguez A, Pilet G, Lenertz M, Platas-Iglesias C, Hildebrandt N, Charbonnière LJ (2022) Cooperative luminescence and cooperative sensitisation upconversion of lanthanide complexes in solution. Angew Chem Int Ed 61:e202113114
Wang J, Jiang Y, Liu J-Y, Xu H-B, Zhang Y-X, Peng X, Kurmoo M, Ng SW, Zeng M-H (2021) Discrete heteropolynuclear Yb/Er assemblies: switching on molecular upconversion under mild conditions. Angew Chem Int Ed 60:22368–22375
Golesorkhi B, Naseri S, Guénée L, Taarit I, Alves F, Nozary H, Piguet C (2021) Ligand-sensitized near-infrared to visible linear light upconversion in a discrete molecular erbium complex. J Am Chem Soc 143:15326–15334
Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815
Acknowledgements
Financial support from the National Natural Science Foundation of China (21571007, 21621061, 21778002, and 21861162008), the Chemistry and Chemical Engineering Guangdong Laboratory (1932002) and High-performance Computing Platform of Peking University is acknowledged.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection “Metal Legand Chromophores for Bioassays”; edited by Kenneth Kam-Wing Lo and Peter Kam-Keung LEUNG.
Rights and permissions
About this article
Cite this article
Jin, GQ., Guo, LJ., Zhang, J. et al. Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Top Curr Chem (Z) 380, 31 (2022). https://doi.org/10.1007/s41061-022-00386-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41061-022-00386-6