Skip to main content

Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region

Abstract

Near-infrared (NIR, 700–1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

CT:

Computed tomography

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

NIR:

Near-infrared

SBR:

Signal-to-background ratio

PLIM:

Photoluminescence lifetime imaging microscopy

ISC:

Intersystem crossing

SOC:

Spin–orbit coupling

ATP:

Adenosine triphosphate

ALP:

Alkaline phosphatase

SIM:

Structured illumination microscopy

IEDDA:

Inverse electron-demand Diels–Alder

BCN:

(1R,8S,9s)-Bicyclo[6.1.0]non-4-yne

MRSA:

Methicillin-resistant S. aureus

STED:

Stimulated emission depletion

PeT:

Photoinduced electron transfer

MLCT:

Metal-to-ligand charge transfer

LMCT:

Ligand-to-metal charge transfer

TADF:

Thermally assisted delayed fluorescence

DOTA:

1,4,7,10-Tetraacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

hfac:

Hexafluoroacetylacetonate

References

  1. Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, Maire E, Manley M, Du Plessis A, Stock SR (2021) X-ray computed tomography. Nat Rev Methods Primers 1:18

    Article  CAS  Google Scholar 

  2. Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119:957–1057

    Article  CAS  PubMed  Google Scholar 

  3. Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P (2021) Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 17:688–703

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bodini B, Tonietto M, Airas L, Stankoff B (2021) Positron emission tomography in multiple sclerosis—straight to the target. Nat Rev Neurol 17:663–675

    Article  PubMed  Google Scholar 

  5. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo Q-Y, Cai W (2020) ImmunoPET: concept, design, and applications. Chem Rev 120:3787–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Y, Zhang G, Zeng Z, Pu K (2022) Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 51:566–593

    Article  CAS  PubMed  Google Scholar 

  7. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  8. Li C, Chen G, Zhang Y, Wu F, Wang Q (2020) Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J Am Chem Soc 142:14789–14804

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X (2022) Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: from strategic design toward molecular imaging and theranostics. Chem Rev 122:209–268

    Article  CAS  PubMed  Google Scholar 

  10. Yang Q, Ma H, Liang Y, Dai H (2021) Rational design of high brightness NIR-II organic dyes with S-D-A-D-S structure. Acc Mater Res 2:170–183

    Article  CAS  Google Scholar 

  11. Lei Z, Zhang F (2021) Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew Chem Int Ed 60:16294–16308

    Article  CAS  Google Scholar 

  12. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, Zhang X, Yaghi OK, Alamparambil ZR, Hong X, Cheng Z, Dai H (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242

    Article  CAS  PubMed  Google Scholar 

  13. Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X (2022) The chemistry of organic contrast agents in the NIR-II window. Angew Chem Int Ed 61:e202114722

    Article  CAS  Google Scholar 

  14. Ning Y, Jin G-Q, Wang M-X, Gao S, Zhang J-L (2022) Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr Opin Chem Biol 66:102097

    Article  CAS  PubMed  Google Scholar 

  15. Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W (2018) Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem Rev 118:1770–1839

    Article  CAS  PubMed  Google Scholar 

  16. Montalti MAC, Prodi L, Gandolfi MT (2006) Handbook of photochemistry. CRC Press, Boca Raton

    Book  Google Scholar 

  17. Feng G, Zhang G-Q, Ding D (2020) Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev 49:8179–8234

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Wang L, Zhao Z, Sun B, Zhan G, Liu H, Bian Z, Liu Z (2020) Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes. Nat Commun 11:5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M (2021) Dye-sensitized solar cells strike back. Chem Soc Rev 50:12450–12550

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang Z-S, Yao Y, Sedgwick AC, Li C, Xia Y, Wang Y, Kang L, Su H, Wang B-W, Gao S, Sessler JL, Zhang J-L (2020) Rational design of an “all-in-one” phototheranostic. Chem Sci 11:8204–8213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Balzani V, Campagna S (2007) Photochemistry and photophysics of coordination compounds I. Springer, Berlin

    Book  Google Scholar 

  22. Wong KM-C, Yam VW-W (2011) Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior. Acc Chem Res 44:424–434

    Article  CAS  PubMed  Google Scholar 

  23. Yam VW-W, Au VK-M, Leung SY-L (2015) Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem Rev 115:7589–7728

    Article  CAS  PubMed  Google Scholar 

  24. Chen W-C, Sukpattanacharoen C, Chan W-H, Huang C-C, Hsu H-F, Shen D, Hung W-Y, Kungwan N, Escudero D, Lee C-S, Chi Y (2020) Modulation of solid-state aggregation of square-planar Pt(II) based emitters: enabling highly efficient deep-red/near infrared electroluminescence. Adv Funct Mater 30:2002494

    Article  CAS  Google Scholar 

  25. Wang SF, Fu L-W, Wei Y-C, Liu S-H, Lin J-A, Lee G-H, Chou P-T, Huang J-Z, Wu C-I, Yuan Y, Lee C-S, Chi Y (2019) Near-infrared emission induced by shortened Pt–Pt contact: diplatinum(II) complexes with pyridyl pyrimidinato cyclometalates. Inorg Chem 58:13892–13901

    Article  CAS  PubMed  Google Scholar 

  26. Wu J, Li Y, Tan C, Wang X, Zhang Y, Song J, Qu J, Wong W-Y (2018) Aggregation-induced near-infrared emitting platinum(II) terpyridyl complex: cellular characterisation and lysosome-specific localisation. Chem Commun 54:11144–11147

    Article  CAS  Google Scholar 

  27. Wu C, Chen H-F, Wong K-T, Thompson ME (2010) Study of ion-paired iridium complexes (soft salts) and their application in organic light emitting diodes. J Am Chem Soc 132:3133–3139

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Ma Y, Liu S, Mao Z, Chi Z, Qian P-C, Wong W-Y (2020) Soft salts based on platinum(II) complexes with high emission quantum efficiencies in the near infrared region for in vivo imaging. Chem Commun 56:11681–11684

    Article  CAS  Google Scholar 

  29. Yeung MC-L, Wong KM-C, Tsang YKT, Yam VW-W (2010) Aptamer-induced self-assembly of a NIR-emissive platinum(II) terpyridyl complex for label- and immobilization-free detection of lysozyme and thrombin. Chem Commun 46:7709–7711

    Article  CAS  Google Scholar 

  30. Yeung MC-L, Yam VW-W (2013) Phosphate derivative-induced supramolecular assembly and NIR-emissive behaviour of alkynylplatinum(II) terpyridine complexes for real-time monitoring of enzymatic activities. Chem Sci 4:2928–2935

    Article  CAS  Google Scholar 

  31. Chung CY-S, Li SP-Y, Louie M-W, Lo KK-W, Yam VW-W (2013) Induced self-assembly and disassembly of water-soluble alkynylplatinum(II) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies. Chem Sci 4:2453–2462

    Article  CAS  Google Scholar 

  32. Law AS-Y, Lee LC-C, Yeung MC-L, Lo KK-W, Yam VW-W (2019) Amyloid protein-induced supramolecular self-assembly of water-soluble platinum(II) complexes: a luminescence assay for amyloid fibrillation detection and inhibitor screening. J Am Chem Soc 141:18570–18577

    Article  CAS  PubMed  Google Scholar 

  33. Law AS-Y, Lee LC-C, Lo KK-W, Yam VW-W (2021) Aggregation and supramolecular self-assembly of low-energy red luminescent alkynylplatinum(II) complexes for RNA detection, nucleolus imaging, and RNA synthesis inhibitor screening. J Am Chem Soc 143:5396–5405

    Article  CAS  PubMed  Google Scholar 

  34. Solomatina AI, Slobodina AD, Ryabova EV, Bolshakova OI, Chelushkin PS, Sarantseva SV, Tunik SP (2020) Blood-brain barrier penetrating luminescent conjugates based on cyclometalated platinum(II) complexes. Bioconj Chem 31:2628–2637

    Article  CAS  Google Scholar 

  35. Liu L-Y, Fang H, Chen Q, Chan MH-Y, Ng M, Wang K-N, Liu W, Tian Z, Diao J, Mao Z-W, Yam VW-W (2020) Multiple-color platinum complex with super-large stokes shift for super-resolution imaging of autolysosome escape. Angew Chem Int Ed 59:19229–19236

    Article  CAS  Google Scholar 

  36. Chen Q, Jin C, Shao X, Guan R, Tian Z, Wang C, Liu F, Ling P, Guan J-L, Ji L, Wang F, Chao H, Diao J (2018) Super-resolution tracking of mitochondrial dynamics with an iridium(III) luminophore. Small 14:1802166

    Article  CAS  Google Scholar 

  37. Jin C, Li G, Wu X, Liu J, Wu W, Chen Y, Sasaki T, Chao H, Zhang Y (2021) Robust packing of a self-assembling iridium complex via endocytic trafficking for long-term lysosome tracking. Angew Chem Int Ed 60:7597–7601

    Article  CAS  Google Scholar 

  38. Liu Y, Zhang P, Fang X, Wu G, Chen S, Zhang Z, Chao H, Tan W, Xu L (2017) Near-infrared emitting iridium(III) complexes for mitochondrial imaging in living cells. Dalton Trans 46:4777–4785

    Article  CAS  PubMed  Google Scholar 

  39. Jin C, Guan R, Wu J, Yuan B, Wang L, Huang J, Wang H, Ji L, Chao H (2017) Rational design of NIR-emitting iridium(III) complexes for multimodal phosphorescence imaging of mitochondria under two-photon excitation. Chem Commun 53:10374–10377

    Article  CAS  Google Scholar 

  40. Jin C, Liang F, Wang J, Wang L, Liu J, Liao X, Rees TW, Yuan B, Wang H, Shen Y, Pei Z, Ji L, Chao H (2020) Rational design of cyclometalated iridium(III) complexes for three-photon phosphorescence bioimaging. Angew Chem Int Ed 59:15987–15991

    Article  CAS  Google Scholar 

  41. Wu W, Zhang C, Rees TW, Liao X, Yan X, Chen Y, Ji L, Chao H (2020) Lysosome-targeting iridium(III) Probe with near-infrared emission for the visualization of NO/O2· crosstalk via in vivo peroxynitrite imaging. Anal Chem 92:6003–6009

    Article  CAS  PubMed  Google Scholar 

  42. Fan Y, Zhao J, Yan Q, Chen PR, Zhao D (2014) Water-soluble triscyclometalated organoiridium complex: phosphorescent nanoparticle formation, nonlinear optics, and application for cell imaging. ACS Appl Mater Interfaces 6:3122–3131

    Article  CAS  PubMed  Google Scholar 

  43. Yip AM-H, Lai CK-H, Yiu KS-M, Lo KK-W (2022) Phosphorogenic iridium(III) bis-tetrazine complexes for bioorthogonal peptide stapling, bioimaging, photocytotoxic applications, and the construction of nanosized hydrogels. Angew Chem Int Ed 61:e202116078

    Article  CAS  Google Scholar 

  44. Ge C, Huang H, Wang Y, Zhao H, Zhang P, Zhang Q (2018) Near-infrared luminescent osmium(II) complexes with an intrinsic RNA-targeting capability for nucleolus imaging in living cells. ACS Appl Bio Mater 1:1587–1593

    Article  CAS  PubMed  Google Scholar 

  45. Smitten KL, Scattergood PA, Kiker C, Thomas JA, Elliott PIP (2020) Triazole-based osmium(II) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem Sci 11:8928–8935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dröge F, Noakes FF, Archer SA, Sreedharan S, Raza A, Robertson CC, MacNeil S, Haycock JW, Carson H, Meijer AJHM, Smythe CGW, Bernardino de la Serna J, Dietzek-Ivanšić B, Thomas JA (2021) A dinuclear osmium(II) complex near-infrared nanoscopy probe for nuclear DNA. J Am Chem Soc 143:20442–20453

    Article  PubMed  CAS  Google Scholar 

  47. Gkika KS, Noorani S, Walsh N, Keyes TE (2021) Os(II)-bridged polyarginine conjugates: the additive effects of peptides in promoting or preventing permeation in cells and multicellular tumor spheroids. Inorg Chem 60:8123–8134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yao Y, Hou C-L, Yang Z-S, Ran G, Kang L, Li C, Zhang W, Zhang J, Zhang J-L (2019) Unusual near infrared (NIR) fluorescent palladium(II) macrocyclic complexes containing M-C bonds with bioimaging capability. Chem Sci 10:10170–10178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wegeberg C, Wenger OS (2021) Luminescent first-row transition metal complexes. JACS Au 1:1860–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McCusker James K (2019) Electronic structure in the transition metal block and its implications for light harvesting. Science 363:484–488

    Article  CAS  PubMed  Google Scholar 

  51. Caspar JV, Kober EM, Sullivan BP, Meyer TJ (1982) Application of the energy gap law to the decay of charge-transfer excited states. J Am Chem Soc 104:630–632

    Article  CAS  Google Scholar 

  52. Hamze R, Peltier Jesse L, Sylvinson D, Jung M, Cardenas J, Haiges R, Soleilhavoup M, Jazzar R, Djurovich Peter I, Bertrand G, Thompson Mark E (2019) Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 363:601–606

    Article  CAS  PubMed  Google Scholar 

  53. Chábera P, Liu Y, Prakash O, Thyrhaug E, Nahhas AE, Honarfar A, Essén S, Fredin LA, Harlang TCB, Kjær KS, Handrup K, Ericson F, Tatsuno H, Morgan K, Schnadt J, Häggström L, Ericsson T, Sobkowiak A, Lidin S, Huang P, Styring S, Uhlig J, Bendix J, Lomoth R, Sundström V, Persson P, Wärnmark K (2017) A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 543:695–699

    Article  PubMed  CAS  Google Scholar 

  54. Kjær Kasper S, Kaul N, Prakash O, Chábera P, Rosemann Nils W, Honarfar A, Gordivska O, Fredin Lisa A, Bergquist K-E, Häggström L, Ericsson T, Lindh L, Yartsev A, Styring S, Huang P, Uhlig J, Bendix J, Strand D, Sundström V, Persson P, Lomoth R, Wärnmark K (2019) Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 363:249–253

    Article  PubMed  CAS  Google Scholar 

  55. Young Elizabeth R, Oldacre A (2019) Iron hits the mark. Science 363:225–226

    Article  CAS  PubMed  Google Scholar 

  56. Dorn M, Kalmbach J, Boden P, Päpcke A, Gómez S, Förster C, Kuczelinis F, Carrella LM, Büldt LA, Bings NH, Rentschler E, Lochbrunner S, González L, Gerhards M, Seitz M, Heinze K (2020) A vanadium(III) complex with blue and NIR-II spin-flip luminescence in solution. J Am Chem Soc 142:7947–7955

    Article  CAS  PubMed  Google Scholar 

  57. Dorn M, Kalmbach J, Boden P, Kruse A, Dab C, Reber C, Niedner-Schatteburg G, Lochbrunner S, Gerhards M, Seitz M, Heinze K (2021) Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(III) complex I: synthesis, spectroscopy and static quantum chemistry. Chem Sci 12:10780–10790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harris JP, Reber C, Colmer HE, Jackson TA, Forshaw AP, Smith JM, Kinney RA, Telser J (2017) Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex. Can J Chem 95:547–552

    Article  CAS  Google Scholar 

  59. Kaufhold S, Rosemann NW, Chábera P, Lindh L, Bolaño Losada I, Uhlig J, Pascher T, Strand D, Wärnmark K, Yartsev A, Persson P (2021) Microsecond photoluminescence and photoreactivity of a metal-centered excited state in a hexacarbene–Co(III) complex. J Am Chem Soc 143:1307–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi S, Jung MC, Coburn C, Tadle A, Sylvinson MRD, Djurovich PI, Forrest SR, Thompson ME (2019) Highly efficient photo- and electroluminescence from two-coordinate Cu(I) complexes featuring nonconventional N-heterocyclic carbenes. J Am Chem Soc 141:3576–3588

    Article  CAS  PubMed  Google Scholar 

  61. Gernert M, Balles-Wolf L, Kerner F, Müller U, Schmiedel A, Holzapfel M, Marian CM, Pflaum J, Lambert C, Steffen A (2020) Cyclic (amino)(aryl)carbenes enter the field of chromophore ligands: expanded π system leads to unusually deep red emitting CuI compounds. J Am Chem Soc 142:8897–8909

    Article  CAS  PubMed  Google Scholar 

  62. Herr P, Kerzig C, Larsen CB, Häussinger D, Wenger OS (2021) Manganese(i) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Nat Chem 13:956–962

    Article  CAS  PubMed  Google Scholar 

  63. Wegeberg C, Häussinger D, Wenger OS (2021) Pyrene-decoration of a chromium(0) tris(diisocyanide) enhances excited state delocalization: a strategy to improve the photoluminescence of 3d6 metal complexes. J Am Chem Soc 143:15800–15811

    Article  CAS  PubMed  Google Scholar 

  64. Boden P, Di Martino-Fumo P, Bens T, Steiger S, Albold U, Niedner-Schatteburg G, Gerhards M, Sarkar B (2021) NIR-emissive chromium(0), molybdenum(0), and tungsten(0) complexes in the solid state at room temperature. Chem Eur J 27:12959–12964

    Article  CAS  PubMed  Google Scholar 

  65. Büldt LA, Wenger OS (2017) Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered NO release. Chem Sci 8:7359–7367

    Article  PubMed  PubMed Central  Google Scholar 

  66. Otto S, Scholz N, Behnke T, Resch-Genger U, Heinze K (2017) Thermo-chromium: a contactless optical molecular thermometer. Chem Eur J 23:12131–12135

    Article  CAS  PubMed  Google Scholar 

  67. Basu U, Otto S, Heinze K, Gasser G (2019) Biological evaluation of the NIR-emissive ruby analogue [Cr(ddpd)2][BF4]3 as a photodynamic therapy photosensitizer. Eur J Inorg Chem 2019:37–41

    Article  CAS  Google Scholar 

  68. Kalmbach J, Wang C, You Y, Förster C, Schubert H, Heinze K, Resch-Genger U, Seitz M (2020) Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts. Angew Chem Int Ed 59:18804–18808

    Article  CAS  Google Scholar 

  69. Jiménez J-R, Doistau B, Cruz CM, Besnard C, Cuerva JM, Campaña AG, Piguet C (2019) Chiral molecular ruby [Cr(dqp)2]3+ with long-lived circularly polarized luminescence. Chem Eur J 141:13244–13252

    Google Scholar 

  70. Otto S, Grabolle M, Förster C, Kreitner C, Resch-Genger U, Heinze K (2015) [Cr(ddpd)2]3+: a molecular, water-soluble, highly NIR-emissive ruby analogue. Angew Chem Int Ed 54:11572–11576

    Article  CAS  Google Scholar 

  71. Wang C, Otto S, Dorn M, Kreidt E, Lebon J, Sršan L, Di Martino-Fumo P, Gerhards M, Resch-Genger U, Seitz M, Heinze K (2018) Deuterated molecular ruby with record luminescence quantum yield. Angew Chem Int Ed 57:1112–1116

    Article  CAS  Google Scholar 

  72. Otto S, Förster C, Wang C, Resch-Genger U, Heinze K (2018) A strongly luminescent chromium(III) complex acid. Chem Eur J 24:12555–12563

    Article  CAS  PubMed  Google Scholar 

  73. Treiling S, Wang C, Förster C, Reichenauer F, Kalmbach J, Boden P, Harris JP, Carrella LM, Rentschler E, Resch-Genger U, Reber C, Seitz M, Gerhards M, Heinze K (2019) Luminescence and light-driven energy and electron transfer from an exceptionally long-lived excited state of a non-innocent chromium(III) complex. Angew Chem Int Ed 58:18075–18085

    Article  CAS  Google Scholar 

  74. Reichenauer F, Wang C, Förster C, Boden P, Ugur N, Báez-Cruz R, Kalmbach J, Carrella LM, Rentschler E, Ramanan C, Niedner-Schatteburg G, Gerhards M, Seitz M, Resch-Genger U, Heinze K (2021) Strongly red-emissive molecular ruby [Cr(bpmp)2]3+ surpasses [Ru(bpy)3]2+. J Am Chem Soc 143:11843–11855

    Article  CAS  PubMed  Google Scholar 

  75. Sinha N, Jiménez J-R, Pfund B, Prescimone A, Piguet C, Wenger OS (2021) A near-infrared-II emissive chromium(III) complex. Angew Chem Int Ed 60:23722–23728

    Article  CAS  Google Scholar 

  76. Ning Y, Zhu M, Zhang J-L (2019) Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing. Coord Chem Rev 399:213028

    Article  CAS  Google Scholar 

  77. Jin G-Q, Ning Y, Geng J-X, Jiang Z-F, Wang Y, Zhang J-L (2020) Joining the journey to near infrared (NIR) imaging: the emerging role of lanthanides in the designing of molecular probes. Inorg Chem Front 7:289–299

    Article  CAS  Google Scholar 

  78. Peng X-X, Zhu X-F, Zhang J-L (2020) Near Infrared (NIR) imaging: exploring biologically relevant chemical space for lanthanide complexes. J Inorg Biochem 209:111118

    Article  CAS  PubMed  Google Scholar 

  79. Yang Y, Wang P, Lu L, Fan Y, Sun C, Fan L, Xu C, El-Toni AM, Alhoshan M, Zhang F (2018) Small-molecule lanthanide complexes probe for second near-infrared window bioimaging. Anal Chem 90:7946–7952

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Li X, Xue Z, Jiang M, Zeng S, Hao J (2018) Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection. Biomaterials 169:35–44

    Article  CAS  PubMed  Google Scholar 

  81. Zhuang P, Xiang K, Meng X, Wang G, Li Z, Lu Y, Kan D, Zhang X, Sun S-K (2021) Gram-scale synthesis of a neodymium chelate as a spectral CT and second near-infrared window imaging agent for visualizing the gastrointestinal tract in vivo. J Mater Chem B 9:2285–2294

    Article  CAS  PubMed  Google Scholar 

  82. Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47

    Article  CAS  Google Scholar 

  83. Hamon N, Roux A, Beyler M, Mulatier J-C, Andraud C, Nguyen C, Maynadier M, Bettache N, Duperray A, Grichine A, Brasselet S, Gary-Bobo M, Maury O, Tripier R (2020) Pyclen-based Ln(III) complexes as highly luminescent bioprobes for in vitro and in vivo one- and two-photon bioimaging applications. J Am Chem Soc 142:10184–10197

    Article  CAS  PubMed  Google Scholar 

  84. Wu S, Galán LA, Roux M, Riobé F, Le Guennic B, Guyot Y, Le Bahers T, Micouin L, Maury O, Benedetti E (2021) Tuning excited-state properties of [2.2]paracyclophane-based antennas to ensure efficient sensitization of lanthanide ions or singlet oxygen generation. Inorg Chem 60:16194–16203

    Article  CAS  PubMed  Google Scholar 

  85. Xiong R, Mara D, Liu J, Van Deun R, Borbas KE (2018) Excitation- and emission-wavelength-based multiplex spectroscopy using red-absorbing near-infrared-emitting lanthanide complexes. J Am Chem Soc 140:10975–10979

    Article  CAS  PubMed  Google Scholar 

  86. Salerno EV, Eliseeva SV, Schneider BL, Kampf JW, Petoud S, Pecoraro VL (2020) Visible, near-infrared, and dual-range luminescence spanning the 4f series sensitized by a gallium(III)/lanthanide(III) metallacrown structure. J Phys Chem A 124:10550–10564

    Article  CAS  PubMed  Google Scholar 

  87. Chow CY, Eliseeva SV, Trivedi ER, Nguyen TN, Kampf JW, Petoud S, Pecoraro VL (2016) Ga3+/Ln3+ metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains. J Am Chem Soc 138:5100–5109

    Article  CAS  PubMed  Google Scholar 

  88. Hu J-Y, Ning Y, Meng Y-S, Zhang J, Wu Z-Y, Gao S, Zhang J-L (2017) Highly near-IR emissive ytterbium(III) complexes with unprecedented quantum yields. Chem Sci 8:2702–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ning Y, Chen S, Chen H, Wang J-X, He S, Liu Y-W, Cheng Z, Zhang J-L (2019) A proof-of-concept application of water-soluble ytterbium(III) molecular probes in in vivo NIR-II whole body bioimaging. Inorg Chem Front 6:1962–1967

    Article  CAS  Google Scholar 

  90. Ning Y, Cheng S, Wang J-X, Liu Y-W, Feng W, Li F, Zhang J-L (2019) Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe. Chem Sci 10:4227–4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ning Y, Liu Y-W, Yang Z-S, Yao Y, Kang L, Sessler JL, Zhang J-L (2020) Split and use: structural isomers for diagnosis and therapy. J Am Chem Soc 142:6761–6768

    Article  CAS  PubMed  Google Scholar 

  92. Zhu M, Zhang H, Ran G, Mangel DN, Yao Y, Zhang R, Tan J, Zhang W, Song J, Sessler JL, Zhang J-L (2021) Metal modulation: an easy-to-implement tactic for tuning lanthanide phototheranostics. J Am Chem Soc 143:7541–7552

    Article  CAS  PubMed  Google Scholar 

  93. Lacerda S, Delalande A, Eliseeva SV, Pallier A, Bonnet CS, Szeremeta F, Même S, Pichon C, Petoud S, Tóth É (2021) Doxorubicin-sensitized luminescence of NIR-emitting ytterbium liposomes: towards direct monitoring of drug release. Angew Chem Int Ed 60:23574–23577

    Article  CAS  Google Scholar 

  94. Chang F-F, Feng F-D, Geng J, Huang W (2021) Self-assembly and luminescence of trinuclear lanthanide based supramolecular circular helicates. Chem Commun 57:9220–9223

    Article  CAS  Google Scholar 

  95. Chau H-F, Wu Y, Fok W-Y, Thor W, Cho WC-S, Pa Ma, Lin J, Mak N-K, Bünzli J-CG, Jiang L, Long NJ, Lung HL, Wong K-L (2021) Lanthanide-based peptide-directed visible/near-infrared imaging and inhibition of LMP1. JACS Au 1:1034–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Al Sabea H, Norel L, Galangau O, Hijazi H, Métivier R, Roisnel T, Maury O, Bucher C, Riobé F, Rigaut S (2019) Dual light and redox control of NIR luminescence with complementary photochromic and organometallic antennae. J Am Chem Soc 141:20026–20030

    Article  CAS  PubMed  Google Scholar 

  97. Nonat AM, Charbonnière LJ (2020) Upconversion of light with molecular and supramolecular lanthanide complexes. Coord Chem Rev 409:213192

    Article  CAS  Google Scholar 

  98. Nonat A, Bahamyirou S, Lecointre A, Przybilla F, Mély Y, Platas-Iglesias C, Camerel F, Jeannin O, Charbonnière LJ (2019) Molecular upconversion in water in heteropolynuclear supramolecular Tb/Yb assemblies. J Am Chem Soc 141:1568–1576

    Article  CAS  PubMed  Google Scholar 

  99. Souri N, Tian P, Platas-Iglesias C, Wong K-L, Nonat A, Charbonnière LJ (2017) Upconverted photosensitization of Tb visible emission by NIR Yb excitation in discrete supramolecular heteropolynuclear complexes. J Am Chem Soc 139:1456–1459

    Article  CAS  PubMed  Google Scholar 

  100. Knighton RC, Soro LK, Francés-Soriano L, Rodríguez-Rodríguez A, Pilet G, Lenertz M, Platas-Iglesias C, Hildebrandt N, Charbonnière LJ (2022) Cooperative luminescence and cooperative sensitisation upconversion of lanthanide complexes in solution. Angew Chem Int Ed 61:e202113114

    Article  CAS  Google Scholar 

  101. Wang J, Jiang Y, Liu J-Y, Xu H-B, Zhang Y-X, Peng X, Kurmoo M, Ng SW, Zeng M-H (2021) Discrete heteropolynuclear Yb/Er assemblies: switching on molecular upconversion under mild conditions. Angew Chem Int Ed 60:22368–22375

    Article  CAS  Google Scholar 

  102. Golesorkhi B, Naseri S, Guénée L, Taarit I, Alves F, Nozary H, Piguet C (2021) Ligand-sensitized near-infrared to visible linear light upconversion in a discrete molecular erbium complex. J Am Chem Soc 143:15326–15334

    Article  CAS  PubMed  Google Scholar 

  103. Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (21571007, 21621061, 21778002, and 21861162008), the Chemistry and Chemical Engineering Guangdong Laboratory (1932002) and High-performance Computing Platform of Peking University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Jun-Long Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal Legand Chromophores for Bioassays”; edited by Kenneth Kam-Wing Lo and Peter Kam-Keung LEUNG.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, GQ., Guo, LJ., Zhang, J. et al. Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Top Curr Chem (Z) 380, 31 (2022). https://doi.org/10.1007/s41061-022-00386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00386-6

Keywords