Abstract
Catalysts are the jewel in the crown of the chemical industry, accelerating reaction kinetics and augmenting the efficiency of desired reaction paths. Natural feedstock is a renewable resource capable of providing valuable functional products; in addition, it confers an opportunity to create catalysts. As an alternative to stoichiometric reagents, and as a part of a sustainable approach, the implications of using natural feedstocks as a source of new catalysts has attracted considerable interest. Natural feedstock-derived catalysts can promote chemical transformations more efficiently. Recent reports have highlighted the significant role of these biogenic, cost-effective, innocuous, biodegradable materials as catalysts in many biologically and pharmacologically important protocols. This review outlines the decisive organic transformations for which feedstock-derived catalysts have been employed effectively and successfully, along with their economic and environmental benefits over traditional catalytic systems.
Graphic Abstract

This is a preview of subscription content, access via your institution.





























































References
Bennett J, Wilson K, Lee AF (2016) J Mater Chem A 4:3617–3637
Gao B, Yu Y, Zhou H, Lu J (2012) Environ Toxic Chem 31:1231–1238
Khaiwal R, Laszlo B, Rene VG (2004) Sci Total Environ 318:1–3
Clare LSW, Fathi Z (2012) Sci Total Environ 407:2493–2500
Hagen J (2015) Industrial Catalysis: A Practical Approach. Wiley-VCH, Weinheim
Joshi SS, Bhatnagar A, Ranade VV (2016) In: Joshi S (ed) Industrial Catalytic Processes for Fine and Specialty Chemicals. Elsevier, Amsterdam
Rajkumari K, Das D, Pathak G, Rokhum L (2019) New J Chem 43:2134–2140
McClellan JE, Dorn H (2006) Science and Technology in World History: An Introduction, 3rd edn. JHU, Maryland
Degryse C (2005) L'économie en 100 et quelques mots d'actualité. 3rd edn. De Boeck, Paris
Mubofu EB, Mgaya JE (2018) Top Curr Chem 376:1–15
Tchibambelela B (2009) Global Hunger Trade: a strategy of positive rupture in Congo-Brazzaville. L’Harmattan, Paris
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Curr Opin Biotech 21:277–286
Verser DW, Eggman TJ (2009) US Patent No. US 507562B2
Hossain ABMS, Ibrahim NA, Aleissa MS (2016) Data Brief 8:286–294
Maria RD, Diaz I, Rodriguez M, Saiz A (2013) Int J Chem React Eng 11:469–477
Ukpai PA, Nnabuchi MN (2012) Adv Appl Sci Res 3:1864–1869
Kuhlborn J, Grob J, Opatz T (2019) Nat Prod Rep 37:380–424
Zhan M, Wool RP, Xiao JQ (2011) Compos Part A Appl Sci Manuf 42:229–233
Alcantara R, Amores J, Canoira L, Fidalgo E, Franco MJ, Navarro A (2000) Biomass Bioenerg 18:515–527
Khan MA, Khan T, Ali H (2019) Mater Res 50:1–20
Hulle A, Kadole P, Katkar P (2015) Fibers 3:64–75
Sinclair WB, Eny DM (1945) Bot Gaz 107:231–242
Wu G et al (2018) Nature 554:311–316
Garcia-Salas P et al (2013) Food Chem 141:869–878
He D, Shan Y, Wu Y, Liu G, Chen B, Yao S (2011) Food Chem 127:880–885
Kelebek H, Selli S (2011) J Sci Food Agric 91:1855–1862
Wu GA, Terol J et al (2018) Nature 554:311
Morton J (1987) In: Morton J (ed) Fruits of warm climates. Miami, FL
Economos C, Clay WD (1999) Food Nutr Agric 24:11–18
Abu-Dief AM, Mohamed IMA (2015) Beni-Suef Univ J Basic Appl Sci 4:119–133
Patil SS, Jadhav SD, Patil UP (2012) Arch Appl Sci Res 4:1074–1078
Vekariya RH, Patel KD, Patel HD (2016) Res Chem Intermed 42:7559–7579
Petronijevic J et al (2017) Green Chem 19:707–715
Bhat SI, Choudhury AR, Trivedi DR (2012) RSC Adv 2:10556–10563
Hosseini-Sarvari M, Sharghi H, Etemad S (2007) Chin J Chem 25:1563–1567
Deshmukh MB, Patil SS, Jadhav SD, Pawar PB (2012) Synth Commun 45:1177
Keri RS, Patil MR, Patil SA, Budagumpi S (2015) Eur J Med Chem 89:207–251
Chikhale RV, Pant AM, Menghani SS, Wadibhasme PG, Khedekar PB (2017) Arab J Chem 10:715–725
Patil M, Karhle S, Ubale P, Helavi V (2017) Der Chemica Sinica 8:198–205
Khan MM, Khan S, Saigal SSC (2018) ChemistrySelect 3:1371–1380
Kodape MA, Gawhale ND, Awjare NV (2015) Indian J Chem 54B:671–675
Selvam NP, Perumal PT (2006) Tetrahedron Lett 47:7481–7483
Hajipour AR, Ghayeb Y, Sheikhan N, Ruoho AE (2009) Tetrahedron Lett 50:5649–5651
Kotadia DA, Soni SS (2012) J Mol Catal A 353:44–49
Patil M, Karhle S, Ubale P, Helavi V (2017) Der Pharm Chem 9:28–32
Morbale ST, Jadhav SD, Deshmukh MB, Patil SS (2015) RSC Adv 5:84610–84620
Bakht MA (2015) Bull Environ Pharmacol Life Sci 4:79–85
Saha A, Jana A, Choudhury LH (2018) New J Chem 42:17909–17922
Hafez EAA, Elnagdi MH, Elagamey AGA, El-Taweel FMAA (1987) Heterocycles 26:903–907
Sofan MA, El-Taweel FM, Elagamey AGA, Elnagdi MH (1989) Liebigs Ann Chem 9:935–936
Bonsignore L, Loy G, Secci D, Calignano A (1993) Eur J Med Chem 28:517–520
Bhosale HD et al (2018) Eur Chem Bull 7:120–122
Britannica, T. Editors of Encyclopaedia (2020). Banana. Encyclopedia Britannica. https://www.britannica.com/plant/banana-plant. Accessed 31 May 2021
Nayar NM (2010) In Janick J (ed) Horticultural Reviews, vol 36. Wiley-Blackwell, Hoboken, NJ
Netshiheni RK et al (2019) In: Jideani AIO (ed) Banana Bioactives: Absorption, Utilization and Health Benefits. https://doi.org/10.5772/intechopen.83369
Cheesman EE (1948) Kew Bull 3:145–153
Voora V et al (2020) In: Balino S (ed) Global Market Report: Bananas. International Institute for Sustainable Development, Canada
Archibald JG (1949) J Dairy Sci 32:969–971
Sarma AK et al (2014) Catal Lett 144:1344–1353
Ho LH et al (2012) Int Food Res J 19:1479–1485
Pathak S, Deka DC (2016) J Chem Pharm Res 8:486–491
Basumatary S (2015) Int J Chem Tech Res 7:2265–2271
Fan M et al (2019) Green Energy Environ 4:322–327
Morais DR et al (2017) J Braz Chem Soc 28:308–318
Anhwange BA (2008) J Food Technol 6:263–266
Dakin HD (1909) Am Chem J 42:477–498
Saikia B, Borah P, Barua NC (2015) Green Chem 17:4533–4536
Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 20:3437–3440
Kotha S, Lahiri K, Dhurke K (2002) Tetrahedron 58:9633–9695
Boruah PR, Ali AA, Saikia B, Sarma D (2015) Green Chem 17:1442–1445
Henry L (1895) C R Chim 120:1265–1268
Ono N (2001) The nitro group in organic synthesis. Wiley-VCH, New York
Surneni N, Barua NC, Saikia B (2016) Tetrahedron Lett 2814–2817
Marinkovic DM et al (2016) Renew Sustain Energy Rev 56:1387–1408
Pathak G, Rajkumari K, Rokhum L (2019) Nanoscale Adv 1:1013–1020
Betiku E, Mistura-Akintunde A, Ojumu V (2016) Energy 103:797–806
Rajkumari K, Rokhum L (2020) Biomass Conv Bioref 10:839–848
Dwivedi KD, Borah B, Chowhan LR (2020) Front Chem 7:944
Bagul SD, Rajput JD, Bendre RS (2017) Environ Chem Lett 15:725–731
Saikia B (2008) Lett Org Chem 15:503–507
Sangeetha M, Rajendran S, Sathiyabama J, Prabhakar P (2012) J Nat Prod Plant Resour 2:601–610
Allahi A, Akhlaghinia B (2020) Phosphorus Sulfur Silicon Relat Elem 196:328–336. https://doi.org/10.1080/10426507.2020.1835905
Kantharaju K, Hiremath PB, Khatavi SY (2019) Indian J Chem 58B:706–713
Yong JWH, Ge L, Ng YF, Tan SN (2009) Molecules 14:5144–5164
Fonseca AM, Monte FJQ, Oliveira MCF, Mattos MC, Cordell GA, Braz-Filho R, Lemos TLG (2009) J Mol Catal B: Enzymatic 57:78–82
Pore S, Rashinkar G, Mote K, Salunkhe R (2010) Chem Biodivers 7:1796–1800
Mote K, Pore S, Rashinkar G, Kamble S, Kumbhar A, Salunkhe R (2010) Arch Appl Sci Res 2:74–80
Patil SS, Jadhav SD, Mane SY (2011) Inter J Org Chem 1:125–131
Losfeld G et al (2012) Green Chem Lett Rev 5:451–456
Leyva E et al (2012) Rev Latinoam Quim 40:140–147
Sarmah M, Diwan A, Mondal M, Thakur AJ, Bora U (2016) RSC Adv 6:28981–28985
Patil UP, Patil RC, Patil SS (2019) J Hetero Chem 56:1898–1913
Maity HS, Misra K, Mahata T, Nag A (2016) RSC Adv 6:24446–24450
Patil RC, Patil UP, Jagdale AA, Shinde SK, Patil SS (2020) Res Chem Intermed 46:3527–3543
Pal R (2014) Indian J Chem 53B:763–768
Howden AJM, Preston GM (2009) Microb Biotechnol 2:441–451
Thimann KV, Mahadevan S (1964) Arch Biochem Biophys 105:133–141
DeSantis et al (2002) J Am Chem Soc 124:9024
Taghavi F, Gholizadeh M, Saljooghi AS, Ramezani M (2016) RSC Adv 6:87082–87087
Adrom B, Maghsoodlou MT, Lashkari M, Hazeri N, Doostmohammadi R (2016) Syn React Inorg Metaorg Nanometal Chem 46:423–427
Shinde S, Damate S, Morbale S, Patil M, Patil SS (2017) RSC Adv 7:7315
Chavan HV, Bandgar BP (2013) Sustain Chem Eng 1:929–936
Nazeruddin GM, Shaikh YI (2014) Der Pharmacia Sinica 5:64–68
Jadhav GD et al (2020) Curr Organocatal 7:140–148
Mali S, Shinde S, Damte S, Patil SS (2018) R Soc Open Sci 5:170333
Ohwaki Y, Hirata H (2012) Soil Sci Plant Nutr 38:235–243
Patil UP, Patil RC, Patil SS (2021) Org Prep Proced Int 53:190–199
Clark J, Deswarte F (2015) Introduction to chemicals from biomass. Wiley, Oxford, UK
Rascio N, Navari-Izzo F (2011) Plant Sci 180:169–181
Zeng Q, Chen R, Zhao X, Wang H, Shen R (2011) Pedosphere 21:358–364
McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, NJ
Haverkamp RG, Marshall AT, Agterveld D (2007) J Nanopart Res 9:697–700
Watanabe T, Osaki M, Yoshihara T, Tadano T (1998) Plant Soil 201:165–173
Escande V, Olszewski TK, Grison C (2014) C R Chim 17:731–737
Losfeld G et al (2012) Catal Today 189:111–116
Viriya-empikul N et al (2010) Bioresour Technol 101:3765–3767
Obadiah A, Swaroopa GA, Kumar SV, Jeganathan KR, Ramasubbu A (2012) Bioresour Technol 116:512–516
Kracke F, Wong AB, Maegaard K, Deutzmann JS, Hubert MA, Hahn C, Jaramillo TF, Spormann AM (2019) Commun Chem 2:45
Patil SS, Jadhav SD, Deshmukh MB (2013) J Chem Sci 125:851–857
Konwar M, Chetia M, Sharma D (2019) Topic Curr Chem 377:6
Morbale ST, Shinde SK, Jadhav SD, Deshmukh MB, Patil SS (2015) Der Pharm Lett 7:169–182
Patil UP, Patil RC, Patil SS (2020) Reac Kinet Mech Cat 129:679–691
Taleb MA et al (2016) J Mater Environ Sci 7:4580–4588
Ding X, Zhang X, Dong C, Guan Z, He YH (2018) Catal Lett 148:757–763
Li Z, Hong H, Lv G (2015) Adv Mater Sci Eng 1–2
Rosas-Hernandez A, Steinlechner C, Junge H et al (2018) Top Curr Chem 376:1
Carney JR, Dillon BR, Thomas SP (2016) Eur J Org Chem 23:3912–3931
Dhakshinamoorthy A, Pitchumani K (2005) Appl Catal A Gen 292:305
Tamaddon F, Tayefi M, Hosseini EH, Zare E (2013) J Mol Catal A Chem 366:36–42
The known unknowns of plastic pollution. The Economist (2018) https://www.economist.com/international/2018/03/03/the-known-unknowns-of-plastic-pollution
Mathieu-Denoncourt J, Wallace SJ, Solla SR, Langlois VS (2015) Gen Comp Endocrinol 219:74–88
Lopez A, Marco L, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A (2011) Appl Catal B-Environ 104:211–219
Liu Q, Xin R, Li C, Xu C, Yang J (2013) J Environ Sci 25:823–829
Dar BA, Mohasin M, Basit A, Farooqui M (2013) J Saudi Chem Soci 17:177–180
Sheikhhosseini E et al (2016) Iran J Chem Chem Eng 35:43–50
Wada S, Suzuki H (2003) Tetrahedron Lett 44:399–401
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors are equally contributed.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Consent for publication
All authors approved the manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Patil, U.P., Patil, S.S. Natural Feedstock in Catalysis: A Sustainable Route Towards Organic Transformations. Top Curr Chem (Z) 379, 36 (2021). https://doi.org/10.1007/s41061-021-00346-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41061-021-00346-6